Abstract

We demonstrate an In0.635Al0.356As/In0.678Ga0.322As strain compensated quantum cascade laser that employs heterogeneous injector regions for low voltage defect operation. The active core consists of interdigitated undoped and doped injectors followed by nominally identical wavelength optical transitions. The undoped injector regions are designed with reduced voltage defect while the doped injectors are of a more conventional design. The measured average voltage defect is less than 79 meV. At 80 K, a 2.3 mm long, back facet high reflectance coated laser has an emission wavelength of 4.7 μm and outputs 2.3 W pulsed power with a peak wall-plug efficiency of 19%.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, "Quantum cascade laser," Science 264, 553 - 556 (1994).
    [CrossRef]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous wave operation of a midinfrared semiconductor laser at room temperature," Science 295, 301 - 305 (2002).
    [CrossRef]
  3. C. Gmachl, D.L. Sivco, R. Colombelli, F. Capasso, and A.Y. Cho, "Ultra-broadband semiconductor laser," Nature 415, 883 - 887 (2002).
    [CrossRef]
  4. A. Tredicucci, C. Gmachl, F. Capasso, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, "A multiwavelength semiconductor laser," Nature 396, 350-353 (1998).
  5. C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, F. Capasso, and A.Y. Cho, "Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation," Appl. Phys. Lett. 79, 572 - 574 (2001).
    [CrossRef]
  6. A. Straub, T.S. Mosely, C. Gmachl, R. Colombelli, M. Troccoli, F. Capasso, D.L. Sivco, and A.Y. Cho, "Threshold reduction in quantum cascade lasers with partially undoped, dual-wavelength interdigitated cascades," Appl. Phys. Lett. 80, 2845 -2847 (2002).
    [CrossRef]
  7. I. Vurgaftman and J.R. Meyer, "Analysis of limitations to wallplug efficiency and output power from quantum cascade lasers," J. Appl. Phys. 99, 123108 (2006).
    [CrossRef]
  8. J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
    [CrossRef]
  9. Z. Liu, Princeton University, Department of Electrical Engineering, Princeton, NJ 08544, and C. Gmachl, L. Cheng, F. Choa, F.J. Towner, X. Wang, and J. Fan have submitted a manuscript called "Temperature dependence of optical gain and loss in λ ≈ 8.2 - 10.2 μm quantum cascade lasers," to IEEE J. Quantum Elect.
  10. J. Nguyen, J.S. Yu, A. Evans, S. Slivken, and M. Razeghi, "Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers," Appl. Phys. Lett. 89, 111113 (2006).
    [CrossRef]
  11. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C.K.N. Patel, "Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mountin process," PNAS 103, 4831 - 4835 (2006).
    [CrossRef]
  12. A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
    [CrossRef]
  13. J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi, "Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 μm " Appl. Phys. Lett. 88, 041111 (2006).
    [CrossRef]
  14. A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314 - 316 (2004).
    [CrossRef]
  15. A. Evans, J.S. Yu, S. Slivken, and M. Razeghi, "Continuous-wave operation of λ ~ 4.8 μm quantum-cascade lasers at room temperature," Appl. Phys. Lett. 85, 2166 -2168 (2004).
    [CrossRef]

2007

J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

2006

J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi, "Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 μm " Appl. Phys. Lett. 88, 041111 (2006).
[CrossRef]

J. Nguyen, J.S. Yu, A. Evans, S. Slivken, and M. Razeghi, "Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers," Appl. Phys. Lett. 89, 111113 (2006).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C.K.N. Patel, "Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mountin process," PNAS 103, 4831 - 4835 (2006).
[CrossRef]

I. Vurgaftman and J.R. Meyer, "Analysis of limitations to wallplug efficiency and output power from quantum cascade lasers," J. Appl. Phys. 99, 123108 (2006).
[CrossRef]

2004

A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314 - 316 (2004).
[CrossRef]

A. Evans, J.S. Yu, S. Slivken, and M. Razeghi, "Continuous-wave operation of λ ~ 4.8 μm quantum-cascade lasers at room temperature," Appl. Phys. Lett. 85, 2166 -2168 (2004).
[CrossRef]

2002

A. Straub, T.S. Mosely, C. Gmachl, R. Colombelli, M. Troccoli, F. Capasso, D.L. Sivco, and A.Y. Cho, "Threshold reduction in quantum cascade lasers with partially undoped, dual-wavelength interdigitated cascades," Appl. Phys. Lett. 80, 2845 -2847 (2002).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous wave operation of a midinfrared semiconductor laser at room temperature," Science 295, 301 - 305 (2002).
[CrossRef]

C. Gmachl, D.L. Sivco, R. Colombelli, F. Capasso, and A.Y. Cho, "Ultra-broadband semiconductor laser," Nature 415, 883 - 887 (2002).
[CrossRef]

2001

C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, F. Capasso, and A.Y. Cho, "Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation," Appl. Phys. Lett. 79, 572 - 574 (2001).
[CrossRef]

1998

A. Tredicucci, C. Gmachl, F. Capasso, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, "A multiwavelength semiconductor laser," Nature 396, 350-353 (1998).

1994

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, "Quantum cascade laser," Science 264, 553 - 556 (1994).
[CrossRef]

Appl. Phys. Lett.

C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, F. Capasso, and A.Y. Cho, "Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation," Appl. Phys. Lett. 79, 572 - 574 (2001).
[CrossRef]

A. Straub, T.S. Mosely, C. Gmachl, R. Colombelli, M. Troccoli, F. Capasso, D.L. Sivco, and A.Y. Cho, "Threshold reduction in quantum cascade lasers with partially undoped, dual-wavelength interdigitated cascades," Appl. Phys. Lett. 80, 2845 -2847 (2002).
[CrossRef]

J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007).
[CrossRef]

A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi, "Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 μm " Appl. Phys. Lett. 88, 041111 (2006).
[CrossRef]

A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314 - 316 (2004).
[CrossRef]

A. Evans, J.S. Yu, S. Slivken, and M. Razeghi, "Continuous-wave operation of λ ~ 4.8 μm quantum-cascade lasers at room temperature," Appl. Phys. Lett. 85, 2166 -2168 (2004).
[CrossRef]

J. Nguyen, J.S. Yu, A. Evans, S. Slivken, and M. Razeghi, "Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers," Appl. Phys. Lett. 89, 111113 (2006).
[CrossRef]

J. Appl. Phys.

I. Vurgaftman and J.R. Meyer, "Analysis of limitations to wallplug efficiency and output power from quantum cascade lasers," J. Appl. Phys. 99, 123108 (2006).
[CrossRef]

Nature

C. Gmachl, D.L. Sivco, R. Colombelli, F. Capasso, and A.Y. Cho, "Ultra-broadband semiconductor laser," Nature 415, 883 - 887 (2002).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, "A multiwavelength semiconductor laser," Nature 396, 350-353 (1998).

PNAS

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C.K.N. Patel, "Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mountin process," PNAS 103, 4831 - 4835 (2006).
[CrossRef]

Science

J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, "Quantum cascade laser," Science 264, 553 - 556 (1994).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous wave operation of a midinfrared semiconductor laser at room temperature," Science 295, 301 - 305 (2002).
[CrossRef]

Other

Z. Liu, Princeton University, Department of Electrical Engineering, Princeton, NJ 08544, and C. Gmachl, L. Cheng, F. Choa, F.J. Towner, X. Wang, and J. Fan have submitted a manuscript called "Temperature dependence of optical gain and loss in λ ≈ 8.2 - 10.2 μm quantum cascade lasers," to IEEE J. Quantum Elect.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics