Abstract

We propose and demonstrate an optical coding scheme using optical interconnection for a photonic analog-to-digital conversion. It allows us to convert a multi-power level signal into a multiple-bit binary code so as to detect it in a bit-parallel format by binary photodiode array. The proposed optical coding is executed after optical quantization using self-frequency shift. Optical interconnection based on a binary conversion table generates a multiple-bit binary code by appropriate allocation of a level identification signal which is provided as a result of optical quantization. Experimental results show that 8-levels analog pulses are converted into 3-bit parallel binary codes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Nosaka, M. Nakamura, K. Sano, K. Kurishima, T. Shibata, and M. Muraguchi, "A 24-Gsps 3-bit nyquist ADC using HBTs for DSP-based electronic dispersion compensation," IEICE Trans. on Electron.E 88-C,1225-1232 (2005).
    [CrossRef]
  2. RobertH. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas Comm. 17,539-550 (1999)
    [CrossRef]
  3. GeorgeC. Valley, "Photonic analog-to-digital converters," Opt. Express 15, 1955-1982 (2007).
    [CrossRef] [PubMed]
  4. B. L. Shoop : Photonic Analog-to-Digital Conversion (Springer Verlag, Berlin, 2001).
  5. Jie Li, Mathias Westlund, Henrik Sunnerud, Bengt-Erik Olsson, Magnus Karlsson, and Peter A . Andrekson, "0.5-Tb/s Eye-Diagram Measurement by Optical Sampling Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber," IEEE Photon. Technol. Lett. 16,566-568 (2004).
    [CrossRef]
  6. H. F. Taylor, "An electro-optic analog-to-digital converter," Proc. IEEE 63,1524-1525 (1975).
    [CrossRef]
  7. J.-M. Jeong and M. E. Marhic, "All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer," Opt. Commun. 91,115-122 (1992).
    [CrossRef]
  8. P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu, and R. R. Alfano, "Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation," Appl. Opt. 36,3425-3429 (1997).
    [CrossRef] [PubMed]
  9. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique," J. Opt. Soc. Am. B 19,2817-2823 (2002).
    [CrossRef]
  10. S. Oda, A. Maruta, K. Kitayama, "All-optical quantization scheme based on fiber nonlinearity," IEEE Photon. Technol. Lett. 16,587-589 (2004).
    [CrossRef]
  11. K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, "Design considerations of all-optical A/D conversion: nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding," J. Lightwave Technol. 24,2618-2628 (2006).
    [CrossRef]
  12. T. Nishitani, T. Konishi, and K. Itoh, "Integration of a Proposed All-Optical Analog-to-Digital Converter using Self-Frequency Shifting in Fiber and a Pulse-Shaping Technique," Opt. Rev. 12,237-241 (2005).
    [CrossRef]
  13. J. Stigwall and S. Galt, "Demonstration and analysis of a 40 gigasample/s interferometric analog-to-digital converter," J. Lightwave Technol. 24,1247-1256 (2004).
    [CrossRef]
  14. T. Konishi and Y. Ichioka, "Ultrafast image transmission by optical time-to-two-dimentional-space-to-time-to-two-dimentional-space conversion," J. Opt. Soc. Am. A 16,1076-1088 (1999).
    [CrossRef]
  15. T. Konishi, Y. Oshita, WanjiYu , H. Furukawa, K. Itoh, and Y. Ichioka, "Application of ultrafast time-to-two-dimensional-space-to-time conversion (I) : Time-varying spectral modulation for arbitrary ultrafast signal generation," IEEE Photon. Technol. Lett. 16,620-622 (2004).
    [CrossRef]
  16. R. Takahashi, "Low-temperature-grown surface-reflection all-optical switch (LOTOS)," Opt. Quantum Electron. 33,999-1017 (2001).
    [CrossRef]
  17. J. P. Gordon "Theory of the soliton self-frequency shift", Opt. Lett. 11,662-664 (1986).
    [CrossRef] [PubMed]
  18. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26,358-360 (2001).
    [CrossRef]
  19. B. R. Washburn, J. A. Buck, and S. E. Ralph, "Transform-limited spectral compression due to self-phase modulation in fibers," Opt. Lett. 25,445-447 (2000).
    [CrossRef]
  20. H. Itoh, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, "High-speed and High-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron. 10,709-727 (2004).
    [CrossRef]

2007 (1)

2006 (1)

2005 (2)

H. Nosaka, M. Nakamura, K. Sano, K. Kurishima, T. Shibata, and M. Muraguchi, "A 24-Gsps 3-bit nyquist ADC using HBTs for DSP-based electronic dispersion compensation," IEICE Trans. on Electron.E 88-C,1225-1232 (2005).
[CrossRef]

T. Nishitani, T. Konishi, and K. Itoh, "Integration of a Proposed All-Optical Analog-to-Digital Converter using Self-Frequency Shifting in Fiber and a Pulse-Shaping Technique," Opt. Rev. 12,237-241 (2005).
[CrossRef]

2004 (5)

H. Itoh, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, "High-speed and High-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron. 10,709-727 (2004).
[CrossRef]

Jie Li, Mathias Westlund, Henrik Sunnerud, Bengt-Erik Olsson, Magnus Karlsson, and Peter A . Andrekson, "0.5-Tb/s Eye-Diagram Measurement by Optical Sampling Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber," IEEE Photon. Technol. Lett. 16,566-568 (2004).
[CrossRef]

J. Stigwall and S. Galt, "Demonstration and analysis of a 40 gigasample/s interferometric analog-to-digital converter," J. Lightwave Technol. 24,1247-1256 (2004).
[CrossRef]

S. Oda, A. Maruta, K. Kitayama, "All-optical quantization scheme based on fiber nonlinearity," IEEE Photon. Technol. Lett. 16,587-589 (2004).
[CrossRef]

T. Konishi, Y. Oshita, WanjiYu , H. Furukawa, K. Itoh, and Y. Ichioka, "Application of ultrafast time-to-two-dimensional-space-to-time conversion (I) : Time-varying spectral modulation for arbitrary ultrafast signal generation," IEEE Photon. Technol. Lett. 16,620-622 (2004).
[CrossRef]

2002 (1)

2001 (2)

2000 (1)

1999 (2)

1997 (1)

1992 (1)

J.-M. Jeong and M. E. Marhic, "All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer," Opt. Commun. 91,115-122 (1992).
[CrossRef]

1986 (1)

1975 (1)

H. F. Taylor, "An electro-optic analog-to-digital converter," Proc. IEEE 63,1524-1525 (1975).
[CrossRef]

Appl. Opt. (1)

E (1)

H. Nosaka, M. Nakamura, K. Sano, K. Kurishima, T. Shibata, and M. Muraguchi, "A 24-Gsps 3-bit nyquist ADC using HBTs for DSP-based electronic dispersion compensation," IEICE Trans. on Electron.E 88-C,1225-1232 (2005).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

RobertH. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas Comm. 17,539-550 (1999)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Itoh, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, "High-speed and High-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron. 10,709-727 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Oda, A. Maruta, K. Kitayama, "All-optical quantization scheme based on fiber nonlinearity," IEEE Photon. Technol. Lett. 16,587-589 (2004).
[CrossRef]

T. Konishi, Y. Oshita, WanjiYu , H. Furukawa, K. Itoh, and Y. Ichioka, "Application of ultrafast time-to-two-dimensional-space-to-time conversion (I) : Time-varying spectral modulation for arbitrary ultrafast signal generation," IEEE Photon. Technol. Lett. 16,620-622 (2004).
[CrossRef]

Jie Li, Mathias Westlund, Henrik Sunnerud, Bengt-Erik Olsson, Magnus Karlsson, and Peter A . Andrekson, "0.5-Tb/s Eye-Diagram Measurement by Optical Sampling Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber," IEEE Photon. Technol. Lett. 16,566-568 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J.-M. Jeong and M. E. Marhic, "All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer," Opt. Commun. 91,115-122 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

R. Takahashi, "Low-temperature-grown surface-reflection all-optical switch (LOTOS)," Opt. Quantum Electron. 33,999-1017 (2001).
[CrossRef]

Opt. Rev. (1)

T. Nishitani, T. Konishi, and K. Itoh, "Integration of a Proposed All-Optical Analog-to-Digital Converter using Self-Frequency Shifting in Fiber and a Pulse-Shaping Technique," Opt. Rev. 12,237-241 (2005).
[CrossRef]

Proc. IEEE (1)

H. F. Taylor, "An electro-optic analog-to-digital converter," Proc. IEEE 63,1524-1525 (1975).
[CrossRef]

Other (1)

B. L. Shoop : Photonic Analog-to-Digital Conversion (Springer Verlag, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of a photonic ADC using the proposed optical coding scheme.

Fig. 2.
Fig. 2.

Experimental setup for a 3-bit photonic ADC, VOA : Variable optical attenuator, ATT : Optical attenuator, PC : Polarization controller, OSA : Optical spectrum analyzer, OBPF : Optical band-pass filter, AWG : Arrayed waveguide grating, DEL : Optical delay line, PD : Photodiode, OSC : Oscilloscope, OC : Optical coupler.

Fig. 3.
Fig. 3.

Experimental result of the relationship between the input peak power and the center wavelength of the optical pulse after SFS.

Fig. 4.
Fig. 4.

Experimental results of the output spectrums of the optical pulses after SFS in 650 m PMHNLF at each input peak power (a) 79.8 W, (b) 92.7 W, (c) 103 W, (d) 113 W, (e) 122 W, (f) 131 W, (g) 139 W, (h) 147 W.

Fig. 5.
Fig. 5.

Experimental results of the temporal waveforms of each bit in a 3-bit binary code at each input power (a) 79.8 W, (b) 92.7 W, (c) 103 W, (d) 113 W, (e) 122 W, (f) 131 W, (g) 139 W, (h) 147 W.

Fig. 6.
Fig. 6.

Experimental results of the measured transfer function of each output port (a) 1st bit output port, (b) 2nd bit output port, (c) 3rd bit output port.

Tables (1)

Tables Icon

Table 1. Octal-to-binary conversion table for a 3-bit ADC.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

b 1 = a 1 + a 3 + a 5 + a 7
b 2 = a 2 + a 3 + a 6 + a 7
b 3 = a 4 + a 5 + a 6 + a 7
N = log 2 ( λ shift + Δ λ FWHM Δ λ FWHM )

Metrics