Abstract

A high-efficiency optical transmitter module for PCB (printed circuit board)-based interconnections was fabricated using a bottom-emitting VCSEL. The bottom-emitting VCSEL was directly bonded by an epoxy on a 90°-bent fiber connector which is inserted into the PCB to couple to the fiber layer embedded in the board. A ray trace simulation indicates that close contact between the VCSEL and the connector removes most of the losses due to Fresnel reflection and beam divergence. This tendency was experimentally identified. Thermal dissipation through the epoxy layer and the connector also improves significantly the power characteristics of the VCSEL. The VCSEL after bonding on the connector shows about 40% higher power compared to that of the bare VCSEL at the current showing a peak power before bonding. The results indicate that direct bonding improves both optical and electrical efficiencies. A successful eye diagram at the speed of 5 Gb/s/ch with 850 nm was accomplished from the VCSEL-direct-bonded transmitter module.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Wu, J. Wu, J. Bao, and X. Wu, "Soft-lithography-based optical interconnection with high misalignment tolerance," Opt. Express 13, 6259-6267 (2005).
    [CrossRef] [PubMed]
  2. R. Lytel, H. L. Davidson, N. Nettliton, and T. Sze, "Optical interconnections within modern high-performance computing systems," in Proceeding of IEEE. 88, 758-763 (2000).
    [CrossRef]
  3. E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, "Realistic end-to-end simulation of the optoelectronic links and comparison with electrical interconnections for system-on-chip applications," J. Lightwave Technol. 19, 1531-1542 (2001).
    [CrossRef]
  4. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, "Comparison between optical and electrical interconnects based on power and speed considerations," Appl. Opt. 27, 1742-1751 (1988).
    [CrossRef] [PubMed]
  5. T. Happel, M. Franke, H. Nanai, and J. Schrage, "Demonstration of optical interconnection-and assembly technique for fully-embedded optical PCB at data rates of 10 G bps/ch," in Proceeding of IEEE Electronics System integration Technology Conference 1, 247-252 (2006).
    [CrossRef]
  6. M. H. Cho, S. H. Hwang, H. S. Cho, and H.-H. Park, "High-coupling-efficiency optical interconnection using a 90o-bent fiber array connector in optical printed circuit boards," IEEE Photon. Technol. Lett. 17, 690-692 (2005).
    [CrossRef]
  7. S. H. Hwang, M. H. Cho, S.-K. Kang, H.-H. Park, H. S. Cho, S.-H. Kim, K.-U. Shin, and S.-W. Ha, "Passively assembled optical interconnection system based on an optical printed circuit board," IEEE Photon. Technol. Lett. 18, 652-654 (2006).
    [CrossRef]
  8. B. S. Rho, S.-K. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H Rhee, "PCB-compatible optical interconnection using 45° -ended connection rods and via-holed waveguides," J. Lightwave Technol. 22, 2128-2134 (2004).
    [CrossRef]
  9. I.-K. Cho, K. B. Yoon, S. H. Ahn, M. Y. Jeong, H.-K. Sung, B. H. Lee, Y. U. Heo, and H.-H. Park, "Board-to-board optical interconnection system using optical slots," IEEE Photon. Technol. Lett. 16, 1754-1757 (2004).
    [CrossRef]
  10. A. L. Glebov, J. Roman, M. G. Lee, and K. Yokouchi, "Optical interconnect modules with fully integrated reflector mirrors," IEEE Photon. Technol. Lett. 17, 1540-1542 (2005).
    [CrossRef]
  11. B. Schwarz, M. Grüttner, and W. Röhle,"Beam attenuation measurement of hydrosols by means of a new measuring technique," Meas. Sci. Technol. 1, 1102-1105 (1990).
    [CrossRef]
  12. M. Grabherr, R. Jäger, R. King, B. Schneider, and D. Wiedenmann, "Fabricating VCSELs in a high tech start-up," Proc. SPIE 4942, 13-24 (2003).
  13. C.-K. Lin, S.-W. Ryu, and P. D. Dapkus, "High-performance wafer-bonded bottom-emitting 850-nm VCSEL’s on the undoped gap and sapphire substrates," IEEE Photon. Technol. Lett. 11, 1542-1544 (1999).
    [CrossRef]

2006

S. H. Hwang, M. H. Cho, S.-K. Kang, H.-H. Park, H. S. Cho, S.-H. Kim, K.-U. Shin, and S.-W. Ha, "Passively assembled optical interconnection system based on an optical printed circuit board," IEEE Photon. Technol. Lett. 18, 652-654 (2006).
[CrossRef]

2005

M. H. Cho, S. H. Hwang, H. S. Cho, and H.-H. Park, "High-coupling-efficiency optical interconnection using a 90o-bent fiber array connector in optical printed circuit boards," IEEE Photon. Technol. Lett. 17, 690-692 (2005).
[CrossRef]

A. L. Glebov, J. Roman, M. G. Lee, and K. Yokouchi, "Optical interconnect modules with fully integrated reflector mirrors," IEEE Photon. Technol. Lett. 17, 1540-1542 (2005).
[CrossRef]

J. Wu, J. Wu, J. Bao, and X. Wu, "Soft-lithography-based optical interconnection with high misalignment tolerance," Opt. Express 13, 6259-6267 (2005).
[CrossRef] [PubMed]

2004

B. S. Rho, S.-K. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H Rhee, "PCB-compatible optical interconnection using 45° -ended connection rods and via-holed waveguides," J. Lightwave Technol. 22, 2128-2134 (2004).
[CrossRef]

I.-K. Cho, K. B. Yoon, S. H. Ahn, M. Y. Jeong, H.-K. Sung, B. H. Lee, Y. U. Heo, and H.-H. Park, "Board-to-board optical interconnection system using optical slots," IEEE Photon. Technol. Lett. 16, 1754-1757 (2004).
[CrossRef]

2001

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, "Realistic end-to-end simulation of the optoelectronic links and comparison with electrical interconnections for system-on-chip applications," J. Lightwave Technol. 19, 1531-1542 (2001).
[CrossRef]

1999

C.-K. Lin, S.-W. Ryu, and P. D. Dapkus, "High-performance wafer-bonded bottom-emitting 850-nm VCSEL’s on the undoped gap and sapphire substrates," IEEE Photon. Technol. Lett. 11, 1542-1544 (1999).
[CrossRef]

1990

B. Schwarz, M. Grüttner, and W. Röhle,"Beam attenuation measurement of hydrosols by means of a new measuring technique," Meas. Sci. Technol. 1, 1102-1105 (1990).
[CrossRef]

1988

Appl. Opt.

IEEE Photon. Technol. Lett.

M. H. Cho, S. H. Hwang, H. S. Cho, and H.-H. Park, "High-coupling-efficiency optical interconnection using a 90o-bent fiber array connector in optical printed circuit boards," IEEE Photon. Technol. Lett. 17, 690-692 (2005).
[CrossRef]

S. H. Hwang, M. H. Cho, S.-K. Kang, H.-H. Park, H. S. Cho, S.-H. Kim, K.-U. Shin, and S.-W. Ha, "Passively assembled optical interconnection system based on an optical printed circuit board," IEEE Photon. Technol. Lett. 18, 652-654 (2006).
[CrossRef]

I.-K. Cho, K. B. Yoon, S. H. Ahn, M. Y. Jeong, H.-K. Sung, B. H. Lee, Y. U. Heo, and H.-H. Park, "Board-to-board optical interconnection system using optical slots," IEEE Photon. Technol. Lett. 16, 1754-1757 (2004).
[CrossRef]

A. L. Glebov, J. Roman, M. G. Lee, and K. Yokouchi, "Optical interconnect modules with fully integrated reflector mirrors," IEEE Photon. Technol. Lett. 17, 1540-1542 (2005).
[CrossRef]

C.-K. Lin, S.-W. Ryu, and P. D. Dapkus, "High-performance wafer-bonded bottom-emitting 850-nm VCSEL’s on the undoped gap and sapphire substrates," IEEE Photon. Technol. Lett. 11, 1542-1544 (1999).
[CrossRef]

J. Lightwave Technol.

E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis, and G. Halkias, "Realistic end-to-end simulation of the optoelectronic links and comparison with electrical interconnections for system-on-chip applications," J. Lightwave Technol. 19, 1531-1542 (2001).
[CrossRef]

B. S. Rho, S.-K. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H Rhee, "PCB-compatible optical interconnection using 45° -ended connection rods and via-holed waveguides," J. Lightwave Technol. 22, 2128-2134 (2004).
[CrossRef]

Meas. Sci. Technol.

B. Schwarz, M. Grüttner, and W. Röhle,"Beam attenuation measurement of hydrosols by means of a new measuring technique," Meas. Sci. Technol. 1, 1102-1105 (1990).
[CrossRef]

Opt. Express

Other

M. Grabherr, R. Jäger, R. King, B. Schneider, and D. Wiedenmann, "Fabricating VCSELs in a high tech start-up," Proc. SPIE 4942, 13-24 (2003).

T. Happel, M. Franke, H. Nanai, and J. Schrage, "Demonstration of optical interconnection-and assembly technique for fully-embedded optical PCB at data rates of 10 G bps/ch," in Proceeding of IEEE Electronics System integration Technology Conference 1, 247-252 (2006).
[CrossRef]

R. Lytel, H. L. Davidson, N. Nettliton, and T. Sze, "Optical interconnections within modern high-performance computing systems," in Proceeding of IEEE. 88, 758-763 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Previous optical transmission system in which a transmitter module is assembled on a 90°-bent fiber connector with a free space gap. (b) Improved optical transmission system with a transmitter module in which VCSEL is directly bonded on a 90°-bent fiber connector.

Fig. 2.
Fig. 2.

Comparison of optical losses obtained from ray trace simulation and experimental measurement for (a) longitudinal (y direction) and (b) lateral (z direction) misalignments.

Fig. 3.
Fig. 3.

Fabrication procedure of the transmitter module with the VCSEL-direct-bonded connector; (a) aluminum block and MT-ferrules with inserted fibers, (b) Assembled MT-ferrules by bending fibers into aluminum block, (c) fabricated 90°-bent fiber connector after cutting out the projected parts and polishing the surfaces, (d) VCSEL bonding on the connector with 0.73 µm misalignment tolerance, (e) transmitter PCB on which driver IC is bonded, (f) completed transmitter module where the connector is bonded to the PCB.

Fig. 4.
Fig. 4.

Photographs of the transmitter module bonded with the 90°-bent fiber connector. Bottom picture shows a magnified image of light spots observed from the fiber connector.

Fig. 5.
Fig. 5.

Eye diagram measured at 5Gb/s/ch.

Fig. 6.
Fig. 6.

Comparison of L-I-V curves of the bare VCSEL and the VCSEL bonded on the connector.

Metrics