Abstract

We report on a novel compact interferometery system for measuring parasitic motions of a precision stage. It is a combination of a Michelson interferometer with an auto-collimator, of which full physical dimension is mere 70 mm×80 mm×35 mm (W×L×H) including optical components, photo-detectors, and electronic circuits. Since the beams, which measure displacement and angle, can be directed at the same position on the moving mirror, the system is applicable for testing small nano-stages where commercial interferometers are not able to be used. And thus, errors from nano-scale deformation of the moving mirror can be minimized. We find that the residual errors of linear and angular motion measurements are 2.5 nm in peak-to-peak and 0.2″, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, and A. Yacot, "Advances in traceable nanometrology at the National Physical Laboratory," Nanotechnology 12, R1-R6 (2001).
    [CrossRef]
  2. J.-A. Kim, J. W. Kim, B. C. Park, and T. B. Eom, "Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope," Meas. Sci. Technol. 17, 1792-1800 (2006).
    [CrossRef]
  3. S. Gonda, T. Kurosawa and Y. Tanimura, "Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology," Meas. Sci. Technol. 10, 986-993 (1999).
    [CrossRef]
  4. M. Holmes, R. Hocken, and D. Trumper, "The long-range scanning stage: a novel platform for scanned-probe microscopy," Precis. Eng. 24, 191-209 (2000).
    [CrossRef]
  5. W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, "Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage," Precis. Eng. 30, 96-103 (2006).
    [CrossRef]
  6. A. Bergamin, G. Cavagnero, and G. Mana, "A displacement and angle interferometer with subatomic resolution," Rev. Sci. Instrum. 64, 3076-3080 (1993).
    [CrossRef]
  7. G. D. Chapman, "Interferometric angular measurement," Appl. Opt. 13, 1646-1651 (1974).
    [CrossRef] [PubMed]
  8. J, S. Oh, E. D. Bae, T. Keem, and S.-W. Kim, "Measuring and compensating for 5-DOF parasitic motion errors in translation stages using Twyman-Green interferometry," Int. J. Mach. Tools Manuf. 46, 1748-1752 (2006).
    [CrossRef]
  9. P. R. Yoder, Jr., E. R. Schlesinger, and J. L. Chickvary, "Active annular-beam laser autocollimator system," Appl. Opt. 14, 1890-1895 (1975).
    [CrossRef] [PubMed]
  10. J. Yuan, X. Long, and K. Yang, "Temperature-controlled autocollimator with ultrahigh angular measuring precision," Rev. Sci. Instrum. 76, 125106 (2005).
    [CrossRef]
  11. G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989), Chap. 2.
  12. C.-M. Wu, C.-S. Su, and G.-S. Peng, "Correction of nonlinearity in one-frequency optical interferometry," Meas. Sci. Technol. 7, 520-524 (1996).
    [CrossRef]
  13. T. Keem, S. Gonda, I. Misumi, Q. Huang, and T. Kurosawa, "Removing nonlinearity of a homodyne interferomerer by adjusting the gains of its quadrature detector systems," Appl. Opt. 43, 2443-2448 (2004).
    [CrossRef] [PubMed]
  14. T. Eom, D. Chung, and J. Kim, "A small angle generator based on a laser angle interferometer," Int. J. Precis. Eng. Manuf. 8, 20-23 (2007).

2007

T. Eom, D. Chung, and J. Kim, "A small angle generator based on a laser angle interferometer," Int. J. Precis. Eng. Manuf. 8, 20-23 (2007).

2006

J.-A. Kim, J. W. Kim, B. C. Park, and T. B. Eom, "Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope," Meas. Sci. Technol. 17, 1792-1800 (2006).
[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, "Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage," Precis. Eng. 30, 96-103 (2006).
[CrossRef]

J, S. Oh, E. D. Bae, T. Keem, and S.-W. Kim, "Measuring and compensating for 5-DOF parasitic motion errors in translation stages using Twyman-Green interferometry," Int. J. Mach. Tools Manuf. 46, 1748-1752 (2006).
[CrossRef]

2005

J. Yuan, X. Long, and K. Yang, "Temperature-controlled autocollimator with ultrahigh angular measuring precision," Rev. Sci. Instrum. 76, 125106 (2005).
[CrossRef]

2004

2001

R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, and A. Yacot, "Advances in traceable nanometrology at the National Physical Laboratory," Nanotechnology 12, R1-R6 (2001).
[CrossRef]

2000

M. Holmes, R. Hocken, and D. Trumper, "The long-range scanning stage: a novel platform for scanned-probe microscopy," Precis. Eng. 24, 191-209 (2000).
[CrossRef]

1999

S. Gonda, T. Kurosawa and Y. Tanimura, "Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology," Meas. Sci. Technol. 10, 986-993 (1999).
[CrossRef]

1996

C.-M. Wu, C.-S. Su, and G.-S. Peng, "Correction of nonlinearity in one-frequency optical interferometry," Meas. Sci. Technol. 7, 520-524 (1996).
[CrossRef]

1993

A. Bergamin, G. Cavagnero, and G. Mana, "A displacement and angle interferometer with subatomic resolution," Rev. Sci. Instrum. 64, 3076-3080 (1993).
[CrossRef]

1975

1974

Appl. Opt.

Int. J. Mach. Tools Manuf.

J, S. Oh, E. D. Bae, T. Keem, and S.-W. Kim, "Measuring and compensating for 5-DOF parasitic motion errors in translation stages using Twyman-Green interferometry," Int. J. Mach. Tools Manuf. 46, 1748-1752 (2006).
[CrossRef]

Int. J. Precis. Eng. Manuf.

T. Eom, D. Chung, and J. Kim, "A small angle generator based on a laser angle interferometer," Int. J. Precis. Eng. Manuf. 8, 20-23 (2007).

Meas. Sci. Technol.

C.-M. Wu, C.-S. Su, and G.-S. Peng, "Correction of nonlinearity in one-frequency optical interferometry," Meas. Sci. Technol. 7, 520-524 (1996).
[CrossRef]

J.-A. Kim, J. W. Kim, B. C. Park, and T. B. Eom, "Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope," Meas. Sci. Technol. 17, 1792-1800 (2006).
[CrossRef]

S. Gonda, T. Kurosawa and Y. Tanimura, "Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology," Meas. Sci. Technol. 10, 986-993 (1999).
[CrossRef]

Nanotechnology

R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, and A. Yacot, "Advances in traceable nanometrology at the National Physical Laboratory," Nanotechnology 12, R1-R6 (2001).
[CrossRef]

Precis. Eng.

M. Holmes, R. Hocken, and D. Trumper, "The long-range scanning stage: a novel platform for scanned-probe microscopy," Precis. Eng. 24, 191-209 (2000).
[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, "Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage," Precis. Eng. 30, 96-103 (2006).
[CrossRef]

Rev. Sci. Instrum.

A. Bergamin, G. Cavagnero, and G. Mana, "A displacement and angle interferometer with subatomic resolution," Rev. Sci. Instrum. 64, 3076-3080 (1993).
[CrossRef]

J. Yuan, X. Long, and K. Yang, "Temperature-controlled autocollimator with ultrahigh angular measuring precision," Rev. Sci. Instrum. 76, 125106 (2005).
[CrossRef]

Other

G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of basic structure of MICA. LS: light source; BS: beam splitter; QPD: quadratic photo diode; CL: collimating lens; PBS: polarizing beam splitter; M1 and M2: mirrors; Q1 and Q2: quarter wave plates: P: polarizer; L: lens; PD: photo diode.

Fig. 2.
Fig. 2.

The (a) schematic diagram and (b) photograph of MICA. OI: optical isolator; BS1 and BS2: beam splitters; L and CL: lens; PBS1 and PBS2: polarizing beam splitter; W1 and W2: half-wave plate; Q1, Q2, and Q3: quarter-wave plates; CC1 and CC2: cube-corner prisms; M, M1, and M2: mirrors; PD1, PD2, and PD3: photo detectors; RP: right angle prism; PMSMF: polarization maintaining single mode fiber; QPD: quadratic photo detector; P: polarizer.

Fig. 3.
Fig. 3.

Residual nonlinearity of the laser interferometer

Fig. 4.
Fig. 4.

Setup for calibration of autocollimator part of MICA. M: Mirror; CA and CB: cube-corner prism; S: spring, MM: micrometer; D: photo detector; O: pivot point of rotational arm.

Fig. 5.
Fig. 5.

(a) Calibration of the auto-collimator part in MICA and (b) the residuals.

Fig. 6.
Fig. 6.

Test results of a nano-stage. (a) Parasitic motion and (b) residual of capacitance sensor

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q ( θ ) = ( cos 2 θ + i sin 2 θ ( 1 i ) sin θ cos θ ( 1 i ) sin θ cos θ sin 2 θ + i cos 2 θ ) .
Q ( θ ) R Q ( θ ) ( 1 0 ) = ( sin 2 θ cos 2 θ sin 2 θ )
θ Y = r Y 2 f and θ P = r P 2 f ,
θ Y = K Y Θ Y and θ P = K P Θ P
Θ Y = V 1 V 2 + V 3 V 4 V 1 + V 2 + V 3 + V 4
Θ P = V 1 + V 2 V 3 V 4 V 1 + V 2 + V 3 + V 4 .

Metrics