Abstract

We report on the formation of nanoscale tungsten spikes generated on subwavelength periodic ripples which built up by single beam 800 nm femtosecond laser pulses. The nanospikes have a diameter ranging from 10 to 100 nm and are up to 250 nm in length. The nanospikes orientate from the ridges toward the valleys of the ripple structures independent of the polarization of the light. The heterogeneous nucleation of the liquid phase at the irradiated surface and the inhomogeneous surface roughness are considered as the mechanism of this nanospike formation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Shi, Z. Chen, N. Liu, H. Lu, Y. Zhou, D. Cui, and G. Yang, "Nonlinear optical properties of self-organized complex oxide Ce:BaTiO3 quantum dots grown by pulsed laser deposition," Appl. Phys. Lett. 75, 1547-1549 (1999).
    [CrossRef]
  2. A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science 279, 208-211 (1998).
    [CrossRef] [PubMed]
  3. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  4. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  5. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Towards nanostructuring with femtosecond laser pulses," Appl. Phys. A 77, 229-235 (2003).
  6. S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, "Nanostructuring with spatially localized femtosecond laser pulses," Opt. Lett. 24, 914-916 (1999).
    [CrossRef]
  7. J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, "Manipulation of gold nanoparticles inside transparent materials," Angew. Chem. Int. Ed. 43, 2230-2234 (2004).
    [CrossRef]
  8. A. V. Kabashin and M. Meunier, "Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water," J Appl. Phys. 94, 7941-7943 (2003).
    [CrossRef]
  9. T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li,and Z. Z. Xu, "ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air," Appl. Phys. Lett. 89, 101116 (2006).
    [CrossRef]
  10. F. Korte, J. Koch, and B. N. Chichkov, "Formation of microbumps and nanojets on gold targets by femtosecond laser pulses," Appl. Phys. A 79, 879-881 (2004).
    [CrossRef]
  11. M. Birnbaum, "Semiconductor Surface Damage Produced by Ruby Lasers," J. Appl. Phys. 36, 3688-3689 (1965).
    [CrossRef]
  12. R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal films," Opt. Lett. 7, 385-387 (1982).
    [CrossRef] [PubMed]
  13. F. Keilmann and Y. H. Bai, "Periodic surface structures frozen into CO2 laser-melted quartz," Appl. Phys. A 29, 9-18 (1982).
    [CrossRef]
  14. G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys. Rev. B 26, 5366-5381 (1982).
    [CrossRef]
  15. P. M. Fauchet and A. E. Siegman, "Surface ripples on silicon and gallium arsenide under picosecond laser illumination," Appl. Phys. Lett. 40, 824-826 (1982).
    [CrossRef]
  16. H. M. Vandriel, J. E. Sipe, and J. F. Young, "Laser-induced coherent modulation of solid and liquid surfaces," J. Lumin. 30, 446-471 (1985).
    [CrossRef]
  17. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155-1172 (1983).
    [CrossRef]
  18. Q. Z. Zhao, S. Malzer, and L. J. Wang, "Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses," Opt. Lett. 32, 1932-1934 (2007).
    [CrossRef] [PubMed]
  19. J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, "Electron and lattice dynamics following optical excitation of metals," Chem. Phys. 251, 237-258, (2000).
    [CrossRef]
  20. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An atomic-level view of melting using femtosecond electron diffraction," Science 302, 1382-1385, (2003).
    [CrossRef] [PubMed]
  21. H. Y. Yang, S. P. Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T Okita, and H. H. Hng, "Field emission from zinc oxide nanoneedles on plastic substrates," Nanotechnology 16, 1300-1303 (2005).
    [CrossRef]
  22. M. Laroche, C. Arnold, F. Marquier, R. Garminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005).
    [CrossRef] [PubMed]
  23. Y. Song, W. A. Steen, D. Peña, Y. B. Jiang, C. J. Medforth, Q. Huo, J. L. Pincus, Y. Qiu, D. Y. Sasaki, J. E. Miller, and J. A. Shelnutt, "Foamlike nanostructures created from dendritic platinum sheets on liposomes," Chem. Mater. 18, 2335-2346 (2006).
    [CrossRef]

2007 (1)

2006 (2)

Y. Song, W. A. Steen, D. Peña, Y. B. Jiang, C. J. Medforth, Q. Huo, J. L. Pincus, Y. Qiu, D. Y. Sasaki, J. E. Miller, and J. A. Shelnutt, "Foamlike nanostructures created from dendritic platinum sheets on liposomes," Chem. Mater. 18, 2335-2346 (2006).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li,and Z. Z. Xu, "ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air," Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

2005 (2)

H. Y. Yang, S. P. Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T Okita, and H. H. Hng, "Field emission from zinc oxide nanoneedles on plastic substrates," Nanotechnology 16, 1300-1303 (2005).
[CrossRef]

M. Laroche, C. Arnold, F. Marquier, R. Garminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Korte, J. Koch, and B. N. Chichkov, "Formation of microbumps and nanojets on gold targets by femtosecond laser pulses," Appl. Phys. A 79, 879-881 (2004).
[CrossRef]

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, "Manipulation of gold nanoparticles inside transparent materials," Angew. Chem. Int. Ed. 43, 2230-2234 (2004).
[CrossRef]

2003 (4)

A. V. Kabashin and M. Meunier, "Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water," J Appl. Phys. 94, 7941-7943 (2003).
[CrossRef]

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Towards nanostructuring with femtosecond laser pulses," Appl. Phys. A 77, 229-235 (2003).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An atomic-level view of melting using femtosecond electron diffraction," Science 302, 1382-1385, (2003).
[CrossRef] [PubMed]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, "Electron and lattice dynamics following optical excitation of metals," Chem. Phys. 251, 237-258, (2000).
[CrossRef]

1999 (2)

W. Shi, Z. Chen, N. Liu, H. Lu, Y. Zhou, D. Cui, and G. Yang, "Nonlinear optical properties of self-organized complex oxide Ce:BaTiO3 quantum dots grown by pulsed laser deposition," Appl. Phys. Lett. 75, 1547-1549 (1999).
[CrossRef]

S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, "Nanostructuring with spatially localized femtosecond laser pulses," Opt. Lett. 24, 914-916 (1999).
[CrossRef]

1998 (1)

A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science 279, 208-211 (1998).
[CrossRef] [PubMed]

1985 (1)

H. M. Vandriel, J. E. Sipe, and J. F. Young, "Laser-induced coherent modulation of solid and liquid surfaces," J. Lumin. 30, 446-471 (1985).
[CrossRef]

1983 (1)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155-1172 (1983).
[CrossRef]

1982 (4)

R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal films," Opt. Lett. 7, 385-387 (1982).
[CrossRef] [PubMed]

F. Keilmann and Y. H. Bai, "Periodic surface structures frozen into CO2 laser-melted quartz," Appl. Phys. A 29, 9-18 (1982).
[CrossRef]

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys. Rev. B 26, 5366-5381 (1982).
[CrossRef]

P. M. Fauchet and A. E. Siegman, "Surface ripples on silicon and gallium arsenide under picosecond laser illumination," Appl. Phys. Lett. 40, 824-826 (1982).
[CrossRef]

1965 (1)

M. Birnbaum, "Semiconductor Surface Damage Produced by Ruby Lasers," J. Appl. Phys. 36, 3688-3689 (1965).
[CrossRef]

Angew. Chem. Int. Ed. (1)

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, "Manipulation of gold nanoparticles inside transparent materials," Angew. Chem. Int. Ed. 43, 2230-2234 (2004).
[CrossRef]

Appl. Phys. A (3)

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B.N. Chichkov, "Towards nanostructuring with femtosecond laser pulses," Appl. Phys. A 77, 229-235 (2003).

F. Korte, J. Koch, and B. N. Chichkov, "Formation of microbumps and nanojets on gold targets by femtosecond laser pulses," Appl. Phys. A 79, 879-881 (2004).
[CrossRef]

F. Keilmann and Y. H. Bai, "Periodic surface structures frozen into CO2 laser-melted quartz," Appl. Phys. A 29, 9-18 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

P. M. Fauchet and A. E. Siegman, "Surface ripples on silicon and gallium arsenide under picosecond laser illumination," Appl. Phys. Lett. 40, 824-826 (1982).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, X. J. Wu, F. L. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. R. Qiu, R. X. Li,and Z. Z. Xu, "ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air," Appl. Phys. Lett. 89, 101116 (2006).
[CrossRef]

W. Shi, Z. Chen, N. Liu, H. Lu, Y. Zhou, D. Cui, and G. Yang, "Nonlinear optical properties of self-organized complex oxide Ce:BaTiO3 quantum dots grown by pulsed laser deposition," Appl. Phys. Lett. 75, 1547-1549 (1999).
[CrossRef]

Chem. Mater. (1)

Y. Song, W. A. Steen, D. Peña, Y. B. Jiang, C. J. Medforth, Q. Huo, J. L. Pincus, Y. Qiu, D. Y. Sasaki, J. E. Miller, and J. A. Shelnutt, "Foamlike nanostructures created from dendritic platinum sheets on liposomes," Chem. Mater. 18, 2335-2346 (2006).
[CrossRef]

Chem. Phys. (1)

J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, "Electron and lattice dynamics following optical excitation of metals," Chem. Phys. 251, 237-258, (2000).
[CrossRef]

J Appl. Phys. (1)

A. V. Kabashin and M. Meunier, "Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water," J Appl. Phys. 94, 7941-7943 (2003).
[CrossRef]

J. Appl. Phys. (1)

M. Birnbaum, "Semiconductor Surface Damage Produced by Ruby Lasers," J. Appl. Phys. 36, 3688-3689 (1965).
[CrossRef]

J. Lumin. (1)

H. M. Vandriel, J. E. Sipe, and J. F. Young, "Laser-induced coherent modulation of solid and liquid surfaces," J. Lumin. 30, 446-471 (1985).
[CrossRef]

Nanotechnology (1)

H. Y. Yang, S. P. Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T Okita, and H. H. Hng, "Field emission from zinc oxide nanoneedles on plastic substrates," Nanotechnology 16, 1300-1303 (2005).
[CrossRef]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (2)

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys. Rev. B 26, 5366-5381 (1982).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155-1172 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Science (2)

A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science 279, 208-211 (1998).
[CrossRef] [PubMed]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An atomic-level view of melting using femtosecond electron diffraction," Science 302, 1382-1385, (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of subwavelength ripple structures induced by different polarization and their 2D Fourier transformation. These structures are generated with 100 shots irradiation under a fluence of 4.2 J/cm2 at (a) vertical, (b) horizontal, (c) left circular, and (d) right circular polarization, respectively. The arrows indicate the direction of polarization. The corresponding 2D Fourier transformations are shown in (e)–(h).

Fig. 2.
Fig. 2.

SEM images of nanospikes grown on ripples induced by (a, e) vertical, (b, f) horizontal, (c, g) left circular, and (d, h) right circular polarization. Each row has the same magnification.

Fig. 3.
Fig. 3.

SEM images of double-layer nanospikes induced under a fluence of 7 J/cm2 with 30 shots irradiation at (a, b) vertical and (c, d) left circular polarization, respectively, which are detected at a higher accelerating voltage of 15 kV.

Fig. 4.
Fig. 4.

Nanoripples (a), nanospheres (b) and nanospikes (c) induced by femtosecond laser with number of shots 10 (a), 40 (b) and 100 (c) under fluence 3 J/cm2. (d) Surface without femtosecond laser irradiation.

Metrics