Abstract

A method of ocean color data processing using the combined near-infrared (NIR) and shortwave infrared (SWIR) bands for atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua is proposed. MODIS-Aqua has been producing the high quality ocean color products in the open oceans, but there are still some significant errors in the derived products in the coastal regions. With the proposed NIR-SWIR combined algorithm, MODIS ocean color data can be processed using the standard (NIR) atmospheric correction algorithm for the open oceans, whereas for the turbid waters in the coastal region the SWIR atmospheric correction algorithm can be executed. The turbid water index developed by Shi and Wang (2007) (Remote Sens. Environ. 110, 149–161 (2007)) is computed prior to the atmospheric correction for the identification of the productive and/or turbid waters where the SWIR algorithm can be operated. For non-turbid ocean waters (discriminated using the turbid water index criterion), the MODIS data are still processed using the standard (NIR) algorithm. The NIR-SWIR combined algorithm has been tested and evaluated. Two examples from MODIS-Aqua measurements along the U.S. and China east coast regions show improved ocean color products with the new approach. In particular, there are no obvious data discontinuities between using the NIR and SWIR methods. Therefore, with the NIR-SWIR combined approach for the MODIS ocean color data processing, good quality ocean color products can be derived both in clear (open) oceans as well as for turbid coastal waters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Research Part II-Topical Studies in Oceanography 51, 5-42 (2004).
    [CrossRef]
  2. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, "An overview of MODIS capabilities for ocean science observations," IEEE Trans. Geosci. Remote Sens. 36, 1250-1265 (1998).
    [CrossRef]
  3. H. R. Gordon, and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Appl. Opt. 33, 443-452 (1994).
    [CrossRef] [PubMed]
  4. H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17,081-17,106 (1997).
    [CrossRef]
  5. S. W. Bailey, and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sens. Environ. 102, 12-23 (2006).
    [CrossRef]
  6. M. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi:10.1029/2004JD004950 (2005).
    [CrossRef]
  7. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, "Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters," Continental Shelf Research 25, 539-555 (2005).
    [CrossRef]
  8. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000).
    [CrossRef]
  9. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000).
    [CrossRef]
  10. M. Wang, and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophy. Res. Lett. 32, L13606, doi:13610.11029/12005GL022917 (2005).
    [CrossRef]
  11. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, "A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters," NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003), Vol. 22, pp. 51-59.
  12. M. Wang, "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations," Appl. Opt. 46, 1535-1547 (2007).
    [CrossRef] [PubMed]
  13. M. Wang, J. Tang, and W. Shi, "MODIS-derived ocean color products along the China east coastal region," Geophy. Res. Lett. 34, L06611, doi:06610.01029/02006GL028599 (2007).
    [CrossRef]
  14. K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, "Maritime aerosol optical properties measured by handheld sun photometers," Remote Sens. Environ. 93, 87-106 (2004).
    [CrossRef]
  15. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-523 (2002).
    [CrossRef]
  16. W. Shi, and M. Wang, "Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing," Remote Sens. Environ. 110, 149-161 (2007).
    [CrossRef]
  17. M. Wang, and H. R. Gordon, "A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS," Remote Sens. Environ. 50, 231-239 (1994).
    [CrossRef]
  18. H. R. Gordon, and M. Wang, "Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component," Appl. Opt. 31, 4247-4260 (1992).
    [CrossRef] [PubMed]
  19. M. Wang, "The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002).
    [CrossRef]
  20. G. M. Hale, and M. R. Querry, "Optical constants of water in the 200nm to 200µm wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  21. P. Y. Deschamps, M. Herman, and D. Tanre, "Modeling of the atmospheric effects and its application to the remote sensing of ocean color," Appl. Opt. 22, 3751-3758 (1983).
    [CrossRef] [PubMed]
  22. M. Wang, "A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations," Remote Sens. Environ. 67, 348-359 (1999).
    [CrossRef]
  23. M. Wang, "Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing," Appl. Opt. 45, 8951-8963 (2006).
    [CrossRef] [PubMed]
  24. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24,937-24,953 (1998).
    [CrossRef]
  25. H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Applied Optics 44, 241-248 (2005).
    [CrossRef] [PubMed]
  26. A. Morel, and G. Gentili, "Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution," Appl. Opt. 30, 4427-4438 (1991).
    [CrossRef] [PubMed]
  27. M. Wang, "Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance," Appl. Opt. 45, 4122-4128 (2006).
    [CrossRef] [PubMed]
  28. S. Chen, G. Zhang, and S. Yang, "Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary," J. Geographical Sciences 13, 498-506 (2003).
    [CrossRef]

2007 (3)

M. Wang, "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations," Appl. Opt. 46, 1535-1547 (2007).
[CrossRef] [PubMed]

M. Wang, J. Tang, and W. Shi, "MODIS-derived ocean color products along the China east coastal region," Geophy. Res. Lett. 34, L06611, doi:06610.01029/02006GL028599 (2007).
[CrossRef]

W. Shi, and M. Wang, "Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing," Remote Sens. Environ. 110, 149-161 (2007).
[CrossRef]

2006 (3)

2005 (4)

H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Applied Optics 44, 241-248 (2005).
[CrossRef] [PubMed]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi:10.1029/2004JD004950 (2005).
[CrossRef]

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, "Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters," Continental Shelf Research 25, 539-555 (2005).
[CrossRef]

M. Wang, and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophy. Res. Lett. 32, L13606, doi:13610.11029/12005GL022917 (2005).
[CrossRef]

2004 (2)

C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Research Part II-Topical Studies in Oceanography 51, 5-42 (2004).
[CrossRef]

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, "Maritime aerosol optical properties measured by handheld sun photometers," Remote Sens. Environ. 93, 87-106 (2004).
[CrossRef]

2003 (1)

S. Chen, G. Zhang, and S. Yang, "Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary," J. Geographical Sciences 13, 498-506 (2003).
[CrossRef]

2002 (2)

A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-523 (2002).
[CrossRef]

M. Wang, "The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002).
[CrossRef]

2000 (2)

1999 (1)

M. Wang, "A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations," Remote Sens. Environ. 67, 348-359 (1999).
[CrossRef]

1998 (2)

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24,937-24,953 (1998).
[CrossRef]

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, "An overview of MODIS capabilities for ocean science observations," IEEE Trans. Geosci. Remote Sens. 36, 1250-1265 (1998).
[CrossRef]

1997 (1)

H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17,081-17,106 (1997).
[CrossRef]

1994 (2)

H. R. Gordon, and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

M. Wang, and H. R. Gordon, "A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS," Remote Sens. Environ. 50, 231-239 (1994).
[CrossRef]

1992 (1)

1991 (1)

1983 (1)

1973 (1)

Appl. Opt. (10)

G. M. Hale, and M. R. Querry, "Optical constants of water in the 200nm to 200µm wavelength region," Appl. Opt. 12, 555-563 (1973).
[CrossRef] [PubMed]

P. Y. Deschamps, M. Herman, and D. Tanre, "Modeling of the atmospheric effects and its application to the remote sensing of ocean color," Appl. Opt. 22, 3751-3758 (1983).
[CrossRef] [PubMed]

H. R. Gordon, and M. Wang, "Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component," Appl. Opt. 31, 4247-4260 (1992).
[CrossRef] [PubMed]

H. R. Gordon, and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

A. Morel, and G. Gentili, "Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution," Appl. Opt. 30, 4427-4438 (1991).
[CrossRef] [PubMed]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000).
[CrossRef]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000).
[CrossRef]

M. Wang, "Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance," Appl. Opt. 45, 4122-4128 (2006).
[CrossRef] [PubMed]

M. Wang, "Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing," Appl. Opt. 45, 8951-8963 (2006).
[CrossRef] [PubMed]

M. Wang, "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations," Appl. Opt. 46, 1535-1547 (2007).
[CrossRef] [PubMed]

Applied Optics (1)

H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Applied Optics 44, 241-248 (2005).
[CrossRef] [PubMed]

Continental Shelf Research (1)

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, "Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters," Continental Shelf Research 25, 539-555 (2005).
[CrossRef]

Deep-Sea Research Part II-Topical Studies in Oceanography (1)

C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Research Part II-Topical Studies in Oceanography 51, 5-42 (2004).
[CrossRef]

Geophy. Res. Lett. (2)

M. Wang, and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophy. Res. Lett. 32, L13606, doi:13610.11029/12005GL022917 (2005).
[CrossRef]

M. Wang, J. Tang, and W. Shi, "MODIS-derived ocean color products along the China east coastal region," Geophy. Res. Lett. 34, L06611, doi:06610.01029/02006GL028599 (2007).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, "An overview of MODIS capabilities for ocean science observations," IEEE Trans. Geosci. Remote Sens. 36, 1250-1265 (1998).
[CrossRef]

Int. J. Remote Sens. (1)

M. Wang, "The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002).
[CrossRef]

J. Atmos. Sci. (1)

A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-523 (2002).
[CrossRef]

J. Geographical Sciences (1)

S. Chen, G. Zhang, and S. Yang, "Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary," J. Geographical Sciences 13, 498-506 (2003).
[CrossRef]

J. Geophys. Res. (3)

M. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi:10.1029/2004JD004950 (2005).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24,937-24,953 (1998).
[CrossRef]

H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17,081-17,106 (1997).
[CrossRef]

Remote Sens. Environ. (5)

S. W. Bailey, and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sens. Environ. 102, 12-23 (2006).
[CrossRef]

K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, "Maritime aerosol optical properties measured by handheld sun photometers," Remote Sens. Environ. 93, 87-106 (2004).
[CrossRef]

W. Shi, and M. Wang, "Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing," Remote Sens. Environ. 110, 149-161 (2007).
[CrossRef]

M. Wang, and H. R. Gordon, "A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS," Remote Sens. Environ. 50, 231-239 (1994).
[CrossRef]

M. Wang, "A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations," Remote Sens. Environ. 67, 348-359 (1999).
[CrossRef]

Other (1)

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, "A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters," NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003), Vol. 22, pp. 51-59.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The flow chart for the NIR-SWIR combined MODIS ocean color data processing procedure.

Fig. 2.
Fig. 2.

The MODIS-Aqua measurements acquired along the U.S. east coast region on April 5, 2004 for the images of Chl-a, nLw(443), nLw(531), and nLw(667), respectively. Panels (a)–(d) are results from the standard (NIR) method; panels (e)–(h) are results from the SWIR method; and panels (i)–(l) are results from the NIR-SWIR combined method.

Fig. 3.
Fig. 3.

The turbid water index T ind (748,1240) images corresponding to the MODIS results discussed for cases (a) along the U.S. east coast region (Fig. 2) and (b) along the China east coast region (Fig. 5). Pixels with the T ind (748,1240)≥1.3 are masked in pink.

Fig. 4.
Fig. 4.

Comparisons in histogram from the selected “Region B” indicated in Fig. 2(b) for the data noise evaluation for the MODIS-derived ocean color product of (a) nLw(443) and (b) Chl-a.

Fig. 5.
Fig. 5.

The MODIS-Aqua measurements acquired along the China east coast region on October 19, 2003 for the images of Chl-a, nLw(443), nLw(531), and nLw(551), respectively. Panels (a)–(d) are results from the standard (NIR) method; panels (e)–(h) are results from the SWIR method; and panels (i)–(l) are results from the NIR-SWIR combined method.

Fig. 6.
Fig. 6.

The MODIS-derived nLw(λ) at 443, 551, and 667 nm as a function of the latitude for the “Line A” shown in Fig. 2(a) using (a) the standard (NIR) method, (b) the SWIR method, and (c) the NIR-SWIR combined method. Plot (d) compares results of chlorophyll-a concentrations using the all three methods and values of the turbid water index T ind (748,1240) are also provided along the line (scale indicated in the bottom right side).

Fig. 7.
Fig. 7.

Comparisons in histogram using the three different algorithms for the MODIS-derived ocean color products from the region around “Line A” in Fig. 2(a) for (a) nLw(443), (b) nLw(531), (c) nLw(667), and (d) Chl-a.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ind ( λ i , λ j ) = Δ ρ ( RC ) ( λ i ) Δ ρ ( RC ) ( λ j ) exp { λ j λ i λ k λ j ln ( Δ ρ ( RC ) ( λ j ) Δ ρ ( RC ) ( λ k ) ) } ,
Δ ρ ( RC ) ( λ l ) = ρ t ( λ l ) ρ r ( λ l )
T ind ( 748 , 1240 ) = Δ ρ ( RC ) ( 748 ) Δ ρ ( RC ) ( 1240 ) exp { 492 890 ln ( Δ ρ ( RC ) ( 1240 ) Δ ρ ( RC ) ( 2130 ) ) } .
T ind ( 748 , 1240 ) 1 + t ( 748 ) ρ w ( 748 ) ρ A ( 748 ) ,

Metrics