Abstract

Based on HYDROLIGHT simulations of more than 2000 reflectance spectra from datasets typical of coastal waters with highly variable optically active constituents as well as on intercomparisons with field measurements, the magnitude of chlorophyll fluorescence was analyzed and parameterized as a function of phytoplankton, CDOM, and suspended inorganic matter concentrations. Using the parameterizations developed, we show that variations in the fluorescence component of water leaving radiance in coastal waters are due more to the variability of attenuation in the water than to the variability of the fluorescence quantum yield, which we estimate to be relatively stable at around 1%. Finally, the ranges of water conditions where fluorescence plays a significant role in the reflectance NIR peak and where it is effectively undetectable are also determined.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. M. Letelier and M. R. Abbott, "An analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996).
    [CrossRef]
  2. Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr. Methods 3, 108 - 130 (2005).
    [CrossRef]
  3. C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, "Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters," Remote Sens. Environ. 97, 311-321 (2005).
    [CrossRef]
  4. J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999).
    [CrossRef]
  5. G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow and J. C. Holz, "Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands," Remote Sens. Environ. 96, 176-187 (2005).
    [CrossRef]
  6. S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, "Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters," Proc. SPIE 6406 (2006).
    [CrossRef]
  7. A. A. Gitelson, J. F. Schalles, and C. M. Hladik, "Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study," Remote Sens. Environ. 109, 464-4722007.
    [CrossRef]
  8. S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii," Limnol. Oceanogr. 50, 1499-1510 (2005).
    [CrossRef]
  9. J. F. Schalles, "Optical Remote Sensing techniques to estimate Phytoplankton Chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations," in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds. (Springer, 2006), Chap. 3.
  10. S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, J. Zhou, "Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination," Opt. Commun. 235, 23-30 (2004).
    [CrossRef]
  11. A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, "Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments," Appl. Opt. 45, 5568-5581 (2006).
    [CrossRef] [PubMed]
  12. R. A. Arnone, Z. P. Lee, P. Martinolich, B. Casey, and S. D. Ladner, "Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS - Terra," in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).
  13. M. Wang and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophys. Res. Lett. 32, L13606 (2005).
    [CrossRef]
  14. B. Franz, "MODIS Land Bands for Ocean Remote Sensing: Application to Chesapeake Bay," presented at the MODIS Science Team Meeting, College Park, MD, Oct., 2006.
  15. M. Babin, A. Morel and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996).
    [CrossRef]
  16. Z. Lee, K. L. Carder, R. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep water," Appl. Opt. 41, 5755-5772 (2002).
    [CrossRef] [PubMed]
  17. J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990).
    [CrossRef]
  18. J. F. R. Gower, L. Brown, and G. A. Borstad, "Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor, "Can. J. Remote Sens. 30, 17-25 (2004).
    [CrossRef]
  19. C. S. Roesler and M. J. Perry, "In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, C7, 13279-13294 (1995).
    [CrossRef]
  20. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).
  21. C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).
  22. R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, and D. A. Kiefer, "In vivo absorption properties of algal pigments," Proc. SPIE Ocean Optics X 1302, 290-302 (1990).
  23. S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, "Impact of apparent fluorescence shift on retrieval Algorithms for coastal waters," in Proc. Ocean Optics XVIII, Montreal, Canada (2006).
  24. Standard methods for the examination of water and wastewater (20th edition). Section 1200 - Chlorophyll. American Public Health Association, Washington, D.C. (1998).
  25. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 108, C7, 321110.1029/2001JC000882 (2003).
    [CrossRef]
  26. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  27. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.
  28. R. Pope and E. Fry, "Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  29. D. Stramski., A. Bricaud, and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001).
    [CrossRef]
  30. M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard and J. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
    [CrossRef]
  31. K. J. Voss, "A spectral model of the beam attenuation coefficient in the ocean and coastal areas," Limnol. Oceanogr. 37, 501-509 (1992).
    [CrossRef]
  32. C. S. Roesler and E. Boss, "Spectral beam attenuation coefficient retrieved from ocean color inversion," Geophys. Res. Lett. 30, 1468, doi:10.1029/2002GL016185 (2003).
    [CrossRef]
  33. A. Morel, "Optical properties of pure water and pure sea water," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds., (Academic, New York, 1974).
  34. M. Sydor and R. A. Arnone, "Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters," Appl. Opt. 36, 6905-6912 (1997).
    [CrossRef]
  35. L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
    [CrossRef]
  36. P. Gege and A. Albert, "A tool for inverse modeling of spectral measurements in deep and shallow waters" in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds., (Springer, 2006), Chap. 4.
    [CrossRef]
  37. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, "Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient," Limnol. Oceanogr. 47, 404-417 (2002).
    [CrossRef]
  38. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
    [CrossRef]
  39. W. Hou, Z. Lee, and A. D. Weidemann, "Why does the Secchi disk disappear? An imaging perspective," Opt. Express 15, 2791-2802 (2007).
    [CrossRef] [PubMed]
  40. D. Pozdnyakov, A. Lyaskovsky, H. Grassl and L. Petterson, "Numerical modeling of transspectral processes in natural waters: implications for remote sensing," Int. J. Remote Sens. 23, 1581-1607 (2002).
    [CrossRef]
  41. J. F. Schalles, A. Gitelson, Y. Z. Yacobi, and A. E. Kroenke, "Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake," J. Phycology 34, 383-390 (1998).
    [CrossRef]
  42. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996).
    [CrossRef] [PubMed]
  43. H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
    [CrossRef]

2007

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, "Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study," Remote Sens. Environ. 109, 464-4722007.
[CrossRef]

W. Hou, Z. Lee, and A. D. Weidemann, "Why does the Secchi disk disappear? An imaging perspective," Opt. Express 15, 2791-2802 (2007).
[CrossRef] [PubMed]

2006

A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, "Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments," Appl. Opt. 45, 5568-5581 (2006).
[CrossRef] [PubMed]

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, "Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters," Proc. SPIE 6406 (2006).
[CrossRef]

2005

M. Wang and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophys. Res. Lett. 32, L13606 (2005).
[CrossRef]

S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii," Limnol. Oceanogr. 50, 1499-1510 (2005).
[CrossRef]

Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr. Methods 3, 108 - 130 (2005).
[CrossRef]

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, "Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters," Remote Sens. Environ. 97, 311-321 (2005).
[CrossRef]

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow and J. C. Holz, "Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands," Remote Sens. Environ. 96, 176-187 (2005).
[CrossRef]

2004

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, J. Zhou, "Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination," Opt. Commun. 235, 23-30 (2004).
[CrossRef]

J. F. R. Gower, L. Brown, and G. A. Borstad, "Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor, "Can. J. Remote Sens. 30, 17-25 (2004).
[CrossRef]

2003

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 108, C7, 321110.1029/2001JC000882 (2003).
[CrossRef]

C. S. Roesler and E. Boss, "Spectral beam attenuation coefficient retrieved from ocean color inversion," Geophys. Res. Lett. 30, 1468, doi:10.1029/2002GL016185 (2003).
[CrossRef]

2002

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, "Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient," Limnol. Oceanogr. 47, 404-417 (2002).
[CrossRef]

D. Pozdnyakov, A. Lyaskovsky, H. Grassl and L. Petterson, "Numerical modeling of transspectral processes in natural waters: implications for remote sensing," Int. J. Remote Sens. 23, 1581-1607 (2002).
[CrossRef]

Z. Lee, K. L. Carder, R. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep water," Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

2001

D. Stramski., A. Bricaud, and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001).
[CrossRef]

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard and J. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

1999

J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999).
[CrossRef]

1998

J. F. Schalles, A. Gitelson, Y. Z. Yacobi, and A. E. Kroenke, "Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake," J. Phycology 34, 383-390 (1998).
[CrossRef]

1997

1996

A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996).
[CrossRef] [PubMed]

M. Babin, A. Morel and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996).
[CrossRef]

R. M. Letelier and M. R. Abbott, "An analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996).
[CrossRef]

1995

C. S. Roesler and M. J. Perry, "In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, C7, 13279-13294 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

1992

K. J. Voss, "A spectral model of the beam attenuation coefficient in the ocean and coastal areas," Limnol. Oceanogr. 37, 501-509 (1992).
[CrossRef]

1990

R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, and D. A. Kiefer, "In vivo absorption properties of algal pigments," Proc. SPIE Ocean Optics X 1302, 290-302 (1990).

J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990).
[CrossRef]

1981

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

Appl. Opt.

Can. J. Remote Sens.

J. F. R. Gower, L. Brown, and G. A. Borstad, "Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor, "Can. J. Remote Sens. 30, 17-25 (2004).
[CrossRef]

Geophys. Res. Lett.

M. Wang and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophys. Res. Lett. 32, L13606 (2005).
[CrossRef]

C. S. Roesler and E. Boss, "Spectral beam attenuation coefficient retrieved from ocean color inversion," Geophys. Res. Lett. 30, 1468, doi:10.1029/2002GL016185 (2003).
[CrossRef]

Int. J. Remote Sens.

J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990).
[CrossRef]

D. Pozdnyakov, A. Lyaskovsky, H. Grassl and L. Petterson, "Numerical modeling of transspectral processes in natural waters: implications for remote sensing," Int. J. Remote Sens. 23, 1581-1607 (2002).
[CrossRef]

M. Babin, A. Morel and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996).
[CrossRef]

J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999).
[CrossRef]

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

J. Geophys. Res.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

C. S. Roesler and M. J. Perry, "In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, C7, 13279-13294 (1995).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard and J. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 108, C7, 321110.1029/2001JC000882 (2003).
[CrossRef]

J. Phycology

J. F. Schalles, A. Gitelson, Y. Z. Yacobi, and A. E. Kroenke, "Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake," J. Phycology 34, 383-390 (1998).
[CrossRef]

Limnol. Oceanogr.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, "Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient," Limnol. Oceanogr. 47, 404-417 (2002).
[CrossRef]

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

K. J. Voss, "A spectral model of the beam attenuation coefficient in the ocean and coastal areas," Limnol. Oceanogr. 37, 501-509 (1992).
[CrossRef]

S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii," Limnol. Oceanogr. 50, 1499-1510 (2005).
[CrossRef]

Limnol. Oceanogr. Methods

Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr. Methods 3, 108 - 130 (2005).
[CrossRef]

Opt. Commun.

S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, J. Zhou, "Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination," Opt. Commun. 235, 23-30 (2004).
[CrossRef]

Opt. Express

Proc. SPIE

S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, "Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters," Proc. SPIE 6406 (2006).
[CrossRef]

Proc. SPIE Ocean Optics X

R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, and D. A. Kiefer, "In vivo absorption properties of algal pigments," Proc. SPIE Ocean Optics X 1302, 290-302 (1990).

Remote Sens. Environ.

R. M. Letelier and M. R. Abbott, "An analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996).
[CrossRef]

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, "Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study," Remote Sens. Environ. 109, 464-4722007.
[CrossRef]

C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, "Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters," Remote Sens. Environ. 97, 311-321 (2005).
[CrossRef]

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow and J. C. Holz, "Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands," Remote Sens. Environ. 96, 176-187 (2005).
[CrossRef]

Other

J. F. Schalles, "Optical Remote Sensing techniques to estimate Phytoplankton Chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations," in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds. (Springer, 2006), Chap. 3.

S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, "Impact of apparent fluorescence shift on retrieval Algorithms for coastal waters," in Proc. Ocean Optics XVIII, Montreal, Canada (2006).

Standard methods for the examination of water and wastewater (20th edition). Section 1200 - Chlorophyll. American Public Health Association, Washington, D.C. (1998).

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).

C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).

B. Franz, "MODIS Land Bands for Ocean Remote Sensing: Application to Chesapeake Bay," presented at the MODIS Science Team Meeting, College Park, MD, Oct., 2006.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.

R. A. Arnone, Z. P. Lee, P. Martinolich, B. Casey, and S. D. Ladner, "Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS - Terra," in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).

P. Gege and A. Albert, "A tool for inverse modeling of spectral measurements in deep and shallow waters" in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds., (Springer, 2006), Chap. 4.
[CrossRef]

A. Morel, "Optical properties of pure water and pure sea water," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds., (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Specific chlorophyll absorption spectra used in simulations.

Fig. 2.
Fig. 2.

HYDROLIGHT simulation (o) and calculated fluorescence amplitude from equation (14) (solid line) for case 1 waters.

Fig. 3.
Fig. 3.

Shift of NIR maximum and changes in reflectance spectra with [Chl]: red - total reflectance spectra, black - elastic spectra.

Fig. 4.
Fig. 4.

Shift of NIR maximum with [Chl]. The solid line is a fitted approximation of data from Schalles et al. [41], dashed line - approximation of the lower boundary for Chesapeake data and [Chl]<100 mg/m3.

Fig. 5.
Fig. 5.

Shift of NIR maximum on reflectance spectra with [Chl] based on simulated data from dataset 1 (Sf=0.5) for η=0 - blue, 1% - green, 2% - red. Dashed lines are upper and lower boundaries of data in Fig. 4.

Fig. 6.
Fig. 6.

Comparison of fluorescence amplitudes: a) calculated from (18a) and simulated using the HYDROLIGHT radiative transfer (RT) program for low nonalgal particle conditions Cnap <1 g/m3, b) calculated from (18b) and simulated using HYDROLIGHT for high nonalgal particle conditions Cnap =1-100 g/m3.

Fig. 7.
Fig. 7.

Comparison of fluorescence amplidudes calculated from (14) and (19) as a function of [Chl] for various conditions: 1 - Case 1 waters (14); 2 - Case 2 waters, low NAP case, average CDOM absorption (19a); 3 and 4 - Case 2 waters, upper and lower Fl boundary for low NAP case (19b,c); 5 - Case 2 waters, lower Fl boundary for high NAP case (19d).

Fig. 8.
Fig. 8.

HYDROLIGHT simulated from WET Labs data and retrieved fluorescence amplitude; a — lower [Chl], b - higher [Chl]. Red — simulations of elastic reflectance, blue — measured reflectance, green- fit with fluorescence, cyan — fluorescence.

Fig. 9.
Fig. 9.

Comparison of field fluorescence amplitude data from Chesapeake Bay and other areas [19], expression (14) for case 1 waters, expressions (19) from HYDROLIGHT simulated datasets as a function of [Chl].

Fig. 10.
Fig. 10.

Statistics for the Chesapeake Bay stations data from which were used in Fig. 9(a) ay (400), b) TSS concentrations.

Fig. 11.
Fig. 11.

Ratio of Fl/Rrs(695) (a) as a function of [Chl] and (b) as a function of NAP concentration

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

r rs ( λ ) = L u ( λ ) E d ( λ ) .
a ( λ ) = a w ( λ ) + a y ( λ ) + a chl ( λ ) + a nap ( λ ) ,
a chl ( λ ) = [ Chl ] · a chl * ( λ ) ,
a nap ( λ ) = a nap ( 400 ) · exp ( S nap ( λ 400 ) ) ,
a nap ( 400 ) = C nap · a nap * ( 400 ) ,
a y = a y ( 400 ) exp ( S y ( λ 400 ) ) ,
b ( λ ) = b w ( λ ) + b chl ( λ ) + b nap ( λ ) ,
b nap ( λ ) = b nap ( 550 ) ( 550 λ ) γ 2 ,
b nap ( 550 ) = b nap * ( 550 ) · C nap ,
b chl ( λ ) = c chl ( λ ) a chl ( λ ) ,
c chl ( λ ) = c chl ( 550 ) ( 550 λ ) γ 1
c chl ( 550 ) = p [ Chl ] 0.62 ,
b b ( λ ) = b bw ( λ ) + b ˜ b chl * b chl ( λ ) + b ˜ bnap * b nap ( λ ) ,
a chl * ( λ ) = S f · a pico * ( λ ) + ( 1 S f ) · a micro * ( λ )
Fl = 1 4 π · η C f · Q a * · [ Chl ] · 400 700 ( a Chl * ( λ ) · E d ( λ , 0 ) ( K ( λ ) + K f ) ) · d λ
Fl = 0.15 [ Chl ] { a w sum ( a w sum + a Chl sum * [ Chl ] ) } .
Fl = 0.15 [ Chl ] ( 1 + 0.2 [ Chl ] ) .
Fl [ Chl ] { a w sum ( a CDOM sum + a nap sum + b b nap sum + a Chl sum * [ Chl ] ) } ,
or Fl [ Chl ] { 1 + ( a CDOM sum + a nap sum + b b nap sum + a Chl sum * [ Chl ] ) a w sum } ,
Fl = x 1 * [ Chl ] ( 1 + x 2 * a y ( 400 ) + x 3 * C nap + x 4 * [ Chl ] ) ,
Fl = 0.0375 [ Chl ] ( 1 + 0.32 a y ( 400 ) + 0.032 [ Chl ] ) ,
Fl = 0.0375 [ Chl ] ( 1 + 0.32 a y ( 400 ) + 0.01 C nap + 0.032 [ Chl ] ) ,
Fl = 0.0375 [ Chl ] ( 1 + 0.8 + 0.032 [ Chl ] ) ,
Fl = 0.0375 [ Chl ] ( 1 + 0.032 [ Chl ] )
Fl = 0.0375 [ Chl ] ( 1 + 1.6 + 0.032 [ Chl ] ) .
Fl = 0.0375 [ Chl ] ( 1 + 4.0 + 0.032 [ Chl ] ) .
r rs mod ( λ ) = ( 0.37 Q ) * b ˜ b mod b m ( λ ) a m ( λ ) + b ˜ b mod b m ( λ ) + r fl mod * Φ ( λ ) ,

Metrics