Abstract

We have studied Stokes and anti-Stokes emission of Au nanoparticles suspended in pure methanol and methanol solution of rhodamine 6G dye. In the presence of dye, excitation of anti-Stokes emission of gold involves two-photon absorption in rhodamine 6G molecules followed by the energy transfer to Au nanoparticles with simultaneous absorption of one pumping photon by Au. The sensitization by dye molecules caused six-fold enhancement of the anti-Stokes emission of gold nanoparticles.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Mooradian, "Photoluminescence of Metals," Phys. Rev. Lett. 22, 185-187 (1969).
    [CrossRef]
  2. G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
    [CrossRef]
  3. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
    [CrossRef]
  4. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
    [CrossRef]
  5. O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and Th. GoodsonIII, "Relative Enhancement of Ultrafast Emission in Gold Nanorods," J. Phys. Chem. B 107, 3101-3104 (2003).
    [CrossRef]
  6. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
    [CrossRef]
  7. J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, "'Photoluminescence from nanosize gold clusters," J. Chem. Phys. 108, 9137-9143 (1998).
    [CrossRef]
  8. W. Kohn and L. Sham, "Self-Consistent Equations including Exchange and Correlation Effects," J. Phys. Rev.,  140, A1133-A1138 (1965).
    [CrossRef]
  9. M. Rohlfing and S. G. Louie, "Optical Excitations in Conjugated Polymers," Phys. Rev. Lett. 82, 1959-1962 (1999).
    [CrossRef]
  10. G. Onida, L. Reining, and A. Rubio, "Electronic excitations: density-functional versus many-body Green’s-function approaches," Rev. Mod. Phys. 74, 601-659 (2002).
    [CrossRef]
  11. D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
    [CrossRef]
  12. G. Cappellini, R. Del Sole, L. Reining, and F. Bechstedt, "Model dielectric function for semiconductors," Phys. Rev. B 47, 9892-9895 (1993).
    [CrossRef]
  13. P. Romaniello and P. L. de Boeij, "The role of relativity in the optical response of gold within the time-dependent current-density-functional theory," J. Chem. Phys. 122, 164303 (2005).
    [CrossRef] [PubMed]
  14. V. I. Gavrilenko and M. A. Noginov, "Ab initio study of optical properties of rhodamine 6G molecular dimers," J. Chem. Phys. 124, 44301 (2006).
    [CrossRef]
  15. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  16. B. Michel, ‘‘MieCalc—freely configurable program for light scattering calculations (Mie theory),’’ http://www.lightscattering.de/MieCalc/eindex.html
  17. P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, "Transient excited state absorption in Rhodamine 6G Pramana," J. Phys. 28, 58-71 (1987).

2006

V. I. Gavrilenko and M. A. Noginov, "Ab initio study of optical properties of rhodamine 6G molecular dimers," J. Chem. Phys. 124, 44301 (2006).
[CrossRef]

2005

P. Romaniello and P. L. de Boeij, "The role of relativity in the optical response of gold within the time-dependent current-density-functional theory," J. Chem. Phys. 122, 164303 (2005).
[CrossRef] [PubMed]

2004

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

2003

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and Th. GoodsonIII, "Relative Enhancement of Ultrafast Emission in Gold Nanorods," J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

2002

G. Onida, L. Reining, and A. Rubio, "Electronic excitations: density-functional versus many-body Green’s-function approaches," Rev. Mod. Phys. 74, 601-659 (2002).
[CrossRef]

2000

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

1999

M. Rohlfing and S. G. Louie, "Optical Excitations in Conjugated Polymers," Phys. Rev. Lett. 82, 1959-1962 (1999).
[CrossRef]

1998

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, "'Photoluminescence from nanosize gold clusters," J. Chem. Phys. 108, 9137-9143 (1998).
[CrossRef]

1993

G. Cappellini, R. Del Sole, L. Reining, and F. Bechstedt, "Model dielectric function for semiconductors," Phys. Rev. B 47, 9892-9895 (1993).
[CrossRef]

1990

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

1987

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, "Transient excited state absorption in Rhodamine 6G Pramana," J. Phys. 28, 58-71 (1987).

1986

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1969

A. Mooradian, "Photoluminescence of Metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

1965

W. Kohn and L. Sham, "Self-Consistent Equations including Exchange and Correlation Effects," J. Phys. Rev.,  140, A1133-A1138 (1965).
[CrossRef]

Chem. Phys. Lett.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000).
[CrossRef]

J. Chem. Phys.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, "'Photoluminescence from nanosize gold clusters," J. Chem. Phys. 108, 9137-9143 (1998).
[CrossRef]

P. Romaniello and P. L. de Boeij, "The role of relativity in the optical response of gold within the time-dependent current-density-functional theory," J. Chem. Phys. 122, 164303 (2005).
[CrossRef] [PubMed]

V. I. Gavrilenko and M. A. Noginov, "Ab initio study of optical properties of rhodamine 6G molecular dimers," J. Chem. Phys. 124, 44301 (2006).
[CrossRef]

J. Phys.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, "Transient excited state absorption in Rhodamine 6G Pramana," J. Phys. 28, 58-71 (1987).

J. Phys. Chem. B

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and Th. GoodsonIII, "Relative Enhancement of Ultrafast Emission in Gold Nanorods," J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

J. Phys. Rev.

W. Kohn and L. Sham, "Self-Consistent Equations including Exchange and Correlation Effects," J. Phys. Rev.,  140, A1133-A1138 (1965).
[CrossRef]

Phys. Rev. B

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

G. Cappellini, R. Del Sole, L. Reining, and F. Bechstedt, "Model dielectric function for semiconductors," Phys. Rev. B 47, 9892-9895 (1993).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett.

A. Mooradian, "Photoluminescence of Metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

M. Rohlfing and S. G. Louie, "Optical Excitations in Conjugated Polymers," Phys. Rev. Lett. 82, 1959-1962 (1999).
[CrossRef]

Rev. Mod. Phys.

G. Onida, L. Reining, and A. Rubio, "Electronic excitations: density-functional versus many-body Green’s-function approaches," Rev. Mod. Phys. 74, 601-659 (2002).
[CrossRef]

Other

B. Michel, ‘‘MieCalc—freely configurable program for light scattering calculations (Mie theory),’’ http://www.lightscattering.de/MieCalc/eindex.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fragment of the calculated energy level diagram of Au in the vicinity of the high-symmetry point L. Dashed lines — absorption transitions stimulated by 354.7 nm photons creating holes in the d-bands. Solid lines — spontaneous emission caused by recombination of electrons relaxed to the Fermi level and holes in the two d-bands. Inset schematically illustrates modification of the excitation scheme at 1064 nm pumping: one-photon pumping is replaced by three-photon pumping.

Fig. 2.
Fig. 2.

Trace 1 - Calculated absorption spectrum of bulk gold; trace 2 - absorption spectrum of bulk gold derived from the data published in Ref. [15]; trace 3 - experimental absorption spectrum of the suspension of Au nanoparticles in methanol, exposed to laser radiation.

Fig. 3.
Fig. 3.

Trace 1 - emission spectrum of the suspension of Au particles in methanol excited by the 3rd harmonic of the Q-switched Nd:YAG laser (λ=354.7 nm); trace 2 emission spectrum of the same suspension pumped by the fundamental wavelength (λ=1064 nm).

Fig. 4.
Fig. 4.

Absorption spectrum (1) and emission spectra (2,3) of the methanol solution of rhodamine 6G, 10 mg/l (2.1×10-5 M). The emission is excited by 354.6 nm light (trace 2) and 1064 nm light (trace 3). Short-wavelength absorption and emission bands are magnified ten-fold and hundred-fold, respectively.

Fig. 5.
Fig. 5.

Emission spectrum of the suspension of Au nanoparticles in methanol (trace 1) and in methanol solution of R6G (trace 2) at excitation with Q-switched laser pulses at λ=1064 nm. Concentration of Au nanoparticles is 3.4 g/l, and concentration of R6G (in the case of trace 2) is 0.5 g/l (1.04×10-3 M). Spectra 3 and 4 are added for comparison. Trace 3a - R6G solution pumped at 1064 nm. Trace 3b - R6G solution pumped at 354.7 nm. Traces 4a and 4b - suspension of Au nanoparticles in methanol pumped at 354.7 nm; traces 4a and 4b have different multiplication factors. Inset: Dependence of the intensity of the violet emission band (1) and yellow-green emission band (2) on Au concentration in the Au-R6G mixture pumped at 1064 nm. Starting concentration of R6G in the solution is 0.1 g/l (2.1×10-4 M).

Fig. 6.
Fig. 6.

Sensitization of anti-Stokes emission of Au nanopaticles by R6G dye. The process involves a two-photon absorption in R6G (1064 nm photons); R6G→Au energy transfer, promoting electron from the upper d band to the sp band (dotted lines); absorption of the 1064 nm photon at the transition d2→d1, and emission of the violet photon. Inset: 1 - pumping pulse at λ=1064 nm, 2 - two-photon pumped emission kinetics of R6G dye at λ=570 nm; and 3 - emission kinetics of Au at λ=400 nm. Concentrations of R6G and Au in the mixture are 2.5g/l (5.3×10-3 M) and 4 g/l, respectively.

Metrics