Abstract

We propose two kinds of hybrid photonic crystal fiber (PCF) structures and investigate the properties of such PCFs in detail. The modal effective index, mode field area, confinement loss, group velocity dispersion, and birefringence are numerically simulated and compared with those of the corresponding index-guiding and bandgap PCFs, which allows for a deeper understanding of the guiding mechanism of the hybrid PCFs. The advantages of hybrid PCFs and potential applications are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  5. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000)
    [CrossRef]
  7. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001).
    [CrossRef]
  8. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  9. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [CrossRef] [PubMed]
  10. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004)
    [CrossRef] [PubMed]
  11. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
    [CrossRef] [PubMed]
  12. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef] [PubMed]
  13. S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
    [CrossRef]
  14. A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
    [CrossRef] [PubMed]
  15. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
    [CrossRef]
  16. N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
    [CrossRef] [PubMed]
  17. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express11, 167–175 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167
    [CrossRef] [PubMed]
  18. M. Koshiba, “Full vector analysis of photonic crystal fibers using the finite element method,” IEICE Electron, E85-C  4, 881–888 (2002).
  19. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3580 (2005).
    [CrossRef]
  20. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express11, 3100–3109 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100
    [CrossRef] [PubMed]
  21. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
    [CrossRef]
  22. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express10, 341–348 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-7-341
    [PubMed]
  23. D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
    [CrossRef]
  24. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
    [CrossRef] [PubMed]
  25. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
    [CrossRef] [PubMed]
  26. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
    [CrossRef] [PubMed]
  27. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
    [CrossRef] [PubMed]

2006 (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3580 (2005).
[CrossRef]

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

2004 (1)

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

2002 (4)

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

M. Koshiba, “Full vector analysis of photonic crystal fibers using the finite element method,” IEICE Electron, E85-C  4, 881–888 (2002).

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

1999 (2)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

1998 (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Albin, S.

S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express11, 167–175 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167
[CrossRef] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Argyros, A.

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

Arriaga, J.

Atkin, D. M.

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Belardi, W.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Bird, D. M.

Birks, T.

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

Birks, T. A.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000)
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Bjarklev, T. P.

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Bouwmans, G.

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Cerqueira S., A.

A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

Cordeiro, C. M.

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

Cordeiro, C. M. B.

A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

de Sandro, P. D

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

de Sterke, C.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

Demokan, M.

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

Dunn, S.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

Eggleton, B.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

Fan, S.

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

Fink, Y.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Furusawa, K.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

George, A. K.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[CrossRef] [PubMed]

A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Guo, S.

S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express11, 167–175 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167
[CrossRef] [PubMed]

Hale, A.

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

Hansen,

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Hedley, T. D.

Ho, H.

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

Hoo, Y.

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Jin, W.

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

Johnson, S.G.

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

Kerbage, C.

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

Knight, J.

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

Knight, J. C.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000)
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Kolodziejski, L.A.

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3580 (2005).
[CrossRef]

M. Koshiba, “Full vector analysis of photonic crystal fibers using the finite element method,” IEICE Electron, E85-C  4, 881–888 (2002).

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express11, 3100–3109 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100
[CrossRef] [PubMed]

Lee, J. H.

Leon-Saval, S.

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

Litchinitser, N.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

Luan, F.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[CrossRef] [PubMed]

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

Mangan, B. J.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Maskaly, G. R.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

McPhedran, R.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Monro, T. M.

Mortensen, N. A.

N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express10, 341–348 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-7-341
[PubMed]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Nielsen, D.

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Noordegraaf, T.

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Ortigosa-Blanch, A.

Pearce, G. J.

Percival, R.

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

Petropoulos, P.

Prideaux, P. H.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

Richardson, D. J.

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Russell, P.

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

Russell, P. S. J.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000)
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Russell, P. St.J.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Saitoh, K.

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3580 (2005).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express11, 3100–3109 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100
[CrossRef] [PubMed]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Sørensen, A.

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Temelkuran, B.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Usner, B.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Villeneuve, P.R.

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

Wadsworth, W.

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

Wadsworth, W. J.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Westbrook, P.

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

White, T.

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

Windeler, R.

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Xiao, L.

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Zhao, C.

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

Electon. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electon. Lett. 31, 1941–1942 (1995).
[CrossRef]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

IEICE Electron (1)

M. Koshiba, “Full vector analysis of photonic crystal fibers using the finite element method,” IEICE Electron, E85-C  4, 881–888 (2002).

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

D. Nielsen, T. Noordegraaf, A. Sørensen, T. P. Bjarklev, and Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Nature (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (1)

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751–5780 (1999).
[CrossRef]

Science (3)

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510–513 (2002).
[CrossRef] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Other (9)

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13, 309–314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13, 9014–9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express11, 3100–3109 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100
[CrossRef] [PubMed]

N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express10, 341–348 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-7-341
[PubMed]

A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14, 926–931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11, 1243–1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express11, 167–175 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167
[CrossRef] [PubMed]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9, 698–713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11, 48–53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematics of cross-sections of two kinds of hybrid PCFs, whereas black holes are high-index rods, empty holes are air holes.

Fig. 2.
Fig. 2.

Modal effective index of the fundamental modes and bandgap map as a function of wavelength.

Fig. 3.
Fig. 3.

Modal effective index of fundamental mode as a function of wavelength. The green dashed line is index-guiding PCF; the red solid line is bandgap PCF; the blue dash-dot line is hybrid PCF A and the black dotted line is hybrid PCF B.

Fig. 4.
Fig. 4.

Normalized effective mode area of the fundamental mode as a function of wavelength.

Fig. 5.
Fig. 5.

Mode intensity distribution of fundamental modes of a (1–5) the index-guiding PCF, b(1–5) the bandgap PCF, c(1–5) the hybrid PCF A and d(1–5) the hybrid PCF B. The wavelength is (1) 0.65 µm, (2) 1.0 µm, (3) 1.15 µm, (4) 1.30 µm and (5) 1.55 µm.

Fig. 6.
Fig. 6.

Confinement loss of the fundamental mode for different fibers as a function of wavelength.

Fig. 7.
Fig. 7.

GVD of the fundamental mode as a function of the wavelength in the first bandgap

Fig. 8.
Fig. 8.

Birefringence of the fundamental mode as a function of the wavelength in the first bandgap.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( s E t 2 dxdy ) 2 s E t 4 dxdy = π ω 2
L c = 8.686 α
D w = λ c d 2 n eff d λ 2
B = n eff x n eff y

Metrics