Abstract

We propose two kinds of hybrid photonic crystal fiber (PCF) structures and investigate the properties of such PCFs in detail. The modal effective index, mode field area, confinement loss, group velocity dispersion, and birefringence are numerically simulated and compared with those of the corresponding index-guiding and bandgap PCFs, which allows for a deeper understanding of the guiding mechanism of the hybrid PCFs. The advantages of hybrid PCFs and potential applications are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and P. D de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  5. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, "High power air-clad photonic crystal fibre laser," Opt. Express 11, 48-53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000)
    [CrossRef]
  7. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, "2R-regenerative all-optical switch based on a highly nonlinear holey fiber," Opt. Lett. 26, 1233-1235 (2001).
    [CrossRef]
  8. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
    [CrossRef]
  9. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  10. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004)
    [CrossRef] [PubMed]
  11. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
    [CrossRef] [PubMed]
  12. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  13. S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780 (1999).
    [CrossRef]
  14. A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
    [CrossRef] [PubMed]
  15. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electon. Lett. 31, 1941-1942 (1995).
    [CrossRef]
  16. N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
    [CrossRef] [PubMed]
  17. S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167
    [CrossRef] [PubMed]
  18. M. Koshiba, "Full vector analysis of photonic crystal fibers using the finite element method," IEICE Electron,  E85-C 4, 881-888 (2002).
  19. K.  Saitoh and M.  Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol.  23, 3580-3580 (2005).
    [CrossRef]
  20. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100
    [CrossRef] [PubMed]
  21. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  22. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-7-341
    [PubMed]
  23. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  24. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
    [CrossRef] [PubMed]
  25. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
    [CrossRef] [PubMed]
  26. P. J. A.  Sazio, A.  Amezcua-Correa, C. E.  Finlayson, J. R.  Hayes, T. J.  Scheidemantel, N. F.  Baril, B. R.  Jackson, D.-J.  Won, F.  Zhang, E. R.  Margine, V.  Gopalan, V. H.  Crespi, and J. V.  Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science  311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  27. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
    [CrossRef] [PubMed]

2006

A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

P. J. A.  Sazio, A.  Amezcua-Correa, C. E.  Finlayson, J. R.  Hayes, T. J.  Scheidemantel, N. F.  Baril, B. R.  Jackson, D.-J.  Won, F.  Zhang, E. R.  Margine, V.  Gopalan, V. H.  Crespi, and J. V.  Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science  311, 1583-1586 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2002

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-7-341
[PubMed]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
[CrossRef] [PubMed]

M. Koshiba, "Full vector analysis of photonic crystal fibers using the finite element method," IEICE Electron,  E85-C 4, 881-888 (2002).

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

2001

2000

1999

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780 (1999).
[CrossRef]

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and P. D de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

1997

1996

1995

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electon. Lett. 31, 1941-1942 (1995).
[CrossRef]

Electon. Lett.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electon. Lett. 31, 1941-1942 (1995).
[CrossRef]

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and P. D de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

IEICE Electron

M. Koshiba, "Full vector analysis of photonic crystal fibers using the finite element method," IEICE Electron,  E85-C 4, 881-888 (2002).

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Nature

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, "High power air-clad photonic crystal fibre laser," Opt. Express 11, 48-53 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48
[CrossRef] [PubMed]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001)http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243
[CrossRef] [PubMed]

S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-167
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[CrossRef] [PubMed]

N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-7-341
[PubMed]

A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-926
[CrossRef] [PubMed]

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-309
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780 (1999).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
[CrossRef] [PubMed]

P. J. A.  Sazio, A.  Amezcua-Correa, C. E.  Finlayson, J. R.  Hayes, T. J.  Scheidemantel, N. F.  Baril, B. R.  Jackson, D.-J.  Won, F.  Zhang, E. R.  Margine, V.  Gopalan, V. H.  Crespi, and J. V.  Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science  311, 1583-1586 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematics of cross-sections of two kinds of hybrid PCFs, whereas black holes are high-index rods, empty holes are air holes.

Fig. 2.
Fig. 2.

Modal effective index of the fundamental modes and bandgap map as a function of wavelength.

Fig. 3.
Fig. 3.

Modal effective index of fundamental mode as a function of wavelength. The green dashed line is index-guiding PCF; the red solid line is bandgap PCF; the blue dash-dot line is hybrid PCF A and the black dotted line is hybrid PCF B.

Fig. 4.
Fig. 4.

Normalized effective mode area of the fundamental mode as a function of wavelength.

Fig. 5.
Fig. 5.

Mode intensity distribution of fundamental modes of a (1–5) the index-guiding PCF, b(1–5) the bandgap PCF, c(1–5) the hybrid PCF A and d(1–5) the hybrid PCF B. The wavelength is (1) 0.65 µm, (2) 1.0 µm, (3) 1.15 µm, (4) 1.30 µm and (5) 1.55 µm.

Fig. 6.
Fig. 6.

Confinement loss of the fundamental mode for different fibers as a function of wavelength.

Fig. 7.
Fig. 7.

GVD of the fundamental mode as a function of the wavelength in the first bandgap

Fig. 8.
Fig. 8.

Birefringence of the fundamental mode as a function of the wavelength in the first bandgap.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( s E t 2 dxdy ) 2 s E t 4 dxdy = π ω 2
L c = 8.686 α
D w = λ c d 2 n eff d λ 2
B = n eff x n eff y

Metrics