Abstract

We propose a compact technique for encryption-verification that relies on the following elements: multifactor encryption, which permits the simultaneous verification of up to four factors; distortion-invariant ID tag for remote identification; near infrared (NIR) writing and readout of the ID tag signal for invisible transmission; and optical processor, based on joint transform pattern recognition by optical correlation, for automatic verification of information. A highly-reliable security system is obtained by joining the advantages of all these elements for the first time. A novel NIR ID tag is designed and built by using commonly available materials. The very ID tag content cannot be visually perceived at naked eye; it cannot be either copied, scanned, or captured by any conventional device. Experimental results based on the NIR ID tag are shown. The satisfactory results obtained demonstrate a new insight into the applications of the compact and efficient technique for high-secure identification systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Réfrégier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Opt. Lett. 20, 767-769 (1995).
    [CrossRef] [PubMed]
  2. B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 36, 1054-1058 (1997).
    [CrossRef] [PubMed]
  3. N. Towghi, B. Javidi, and Z. Luo, "Fully phase encrypted image processor," J. Opt. Soc. Am. A 16, 1915-1927 (1999).
    [CrossRef]
  4. O. Matoba and B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain," Opt. Lett. 24, 762-764 (1999).
    [CrossRef]
  5. O. Matoba and B. Javidi, "The keys to holographic data security," IEEE Circuits Devices Mag. 16, 8-15 (2000).
    [CrossRef]
  6. T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
    [CrossRef]
  7. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, "Optoelectronic information encryption with phase-shifting interferometry," Appl. Opt. 39, 2313-2320 (2000).
    [CrossRef]
  8. E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000).
    [CrossRef]
  9. G. Unnikrishnan and K. Singh, "Optical encryption using quadratic phase system," Opt. Commun. 193, 51-67 (2001).
    [CrossRef]
  10. T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004).
    [CrossRef]
  11. J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005).
    [CrossRef]
  12. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
    [CrossRef]
  13. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, "Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys," Opt. Lett. 30, 1644-1646 (2005).
    [CrossRef] [PubMed]
  14. N. Yoshikawa, M. Itoh, and T. Yatagai, "Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam litography," Opt. Lett. 23, 1483-1485 (1998).
    [CrossRef]
  15. O. Matoba and B. Javidi, "Encrypted optical storage with angular multiplexing," Appl. Opt. 38, 7288-7293 (1999).
    [CrossRef]
  16. G. H. Situ and J. J. Zhang, "Multiple-image encryption by wavelength multiplexing," Opt. Lett. 30, 1306-1308 (2005).
    [CrossRef] [PubMed]
  17. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
    [CrossRef]
  18. M. S. Millán, E. Pérez-Cabré, and B. Javidi, "Multifactor authentication reinforces optical security," Opt. Lett. 31, 721-723 (2006).
    [CrossRef]
  19. L. O’Gorman, "Comparing passwords, tokens, and biometrics for user authentication," Proc. IEEE 91, 2021-2040 (2003).
    [CrossRef]
  20. B. Javidi, "Real-time remote identification and verification of objects using optical ID tags," Opt. Eng. 42, 2346-2348 (2003).
    [CrossRef]
  21. E. Pérez-Cabré and B. Javidi, "Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication," IEEE Trans. Veh. Technol. 54, 1295-1303 (2005).Q2
    [CrossRef]
  22. E. Pérez-Cabré, M. S. Millán, and B. Javidi, "Design of distortion-invariant optical ID tags for remote identification and verification of objects," in Physics of the Automatic Target Recognition, F. Sadjadi and B. Javidi, eds. (Springer Verlag, 2007), Chap. 12.
  23. E. Pérez-Cabré, M. S. Millán, and B. Javidi, "Remote optical ID tag recognition and verification using fully spatial phase multiplexing," Proc. SPIE 5986, 598602-1/13 (2005).
    [CrossRef]
  24. B. Javidi, S. H. Hong, and O. Matoba, "Multidimensional optical sensor and imaging system," Appl. Opt. 45, 2986-2994 (2006).
    [CrossRef] [PubMed]
  25. E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
    [CrossRef]
  26. B. Javidi, "Nonlinear joint power spectrum based optical correlation," Appl. Opt. 28, 2358-2367 (1989).
    [CrossRef] [PubMed]
  27. A. Mahalanobis, "A review of correlation filters and their application for scene matching," in Optoelectronic Devices and Systems for Processing (SPIE, CR65, Bellingham, WA, 1996).
  28. F. Sadjadi, Automatic Target Recognition (SPIE, Bellingham, WA, 2000).
  29. B. Javidi, Optical and Digital Techniques for Information Security (Springer, New York, 2005).
    [CrossRef]
  30. F. Goudail, F. Bollaro, B. Javidi, Ph. Réfrégier, "Influence of a perturbation in a double phase-encoding system," J. Opt. Soc. Am. A 15, 2629-2638 (1998).
    [CrossRef]

2006 (3)

2005 (6)

G. H. Situ and J. J. Zhang, "Multiple-image encryption by wavelength multiplexing," Opt. Lett. 30, 1306-1308 (2005).
[CrossRef] [PubMed]

E. Pérez-Cabré and B. Javidi, "Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication," IEEE Trans. Veh. Technol. 54, 1295-1303 (2005).Q2
[CrossRef]

J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005).
[CrossRef]

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, "Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys," Opt. Lett. 30, 1644-1646 (2005).
[CrossRef] [PubMed]

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
[CrossRef]

2004 (1)

T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004).
[CrossRef]

2003 (2)

L. O’Gorman, "Comparing passwords, tokens, and biometrics for user authentication," Proc. IEEE 91, 2021-2040 (2003).
[CrossRef]

B. Javidi, "Real-time remote identification and verification of objects using optical ID tags," Opt. Eng. 42, 2346-2348 (2003).
[CrossRef]

2001 (1)

G. Unnikrishnan and K. Singh, "Optical encryption using quadratic phase system," Opt. Commun. 193, 51-67 (2001).
[CrossRef]

2000 (3)

1999 (3)

1998 (2)

1997 (2)

B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 36, 1054-1058 (1997).
[CrossRef] [PubMed]

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

1995 (1)

1989 (1)

Arcos, S.

Barrera, J. F.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
[CrossRef]

J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005).
[CrossRef]

Bollaro, F.

Bolognini, N.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
[CrossRef]

Carnicer, A.

Chalasinska-Macukow, K.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

Goudail, F.

Henao, R.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
[CrossRef]

J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005).
[CrossRef]

Hong, S. H.

Itoh, M.

Javidi, B.

M. S. Millán, E. Pérez-Cabré, and B. Javidi, "Multifactor authentication reinforces optical security," Opt. Lett. 31, 721-723 (2006).
[CrossRef]

B. Javidi, S. H. Hong, and O. Matoba, "Multidimensional optical sensor and imaging system," Appl. Opt. 45, 2986-2994 (2006).
[CrossRef] [PubMed]

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
[CrossRef]

E. Pérez-Cabré and B. Javidi, "Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication," IEEE Trans. Veh. Technol. 54, 1295-1303 (2005).Q2
[CrossRef]

T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004).
[CrossRef]

B. Javidi, "Real-time remote identification and verification of objects using optical ID tags," Opt. Eng. 42, 2346-2348 (2003).
[CrossRef]

O. Matoba and B. Javidi, "The keys to holographic data security," IEEE Circuits Devices Mag. 16, 8-15 (2000).
[CrossRef]

E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000).
[CrossRef]

E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, "Optoelectronic information encryption with phase-shifting interferometry," Appl. Opt. 39, 2313-2320 (2000).
[CrossRef]

O. Matoba and B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain," Opt. Lett. 24, 762-764 (1999).
[CrossRef]

O. Matoba and B. Javidi, "Encrypted optical storage with angular multiplexing," Appl. Opt. 38, 7288-7293 (1999).
[CrossRef]

N. Towghi, B. Javidi, and Z. Luo, "Fully phase encrypted image processor," J. Opt. Soc. Am. A 16, 1915-1927 (1999).
[CrossRef]

F. Goudail, F. Bollaro, B. Javidi, Ph. Réfrégier, "Influence of a perturbation in a double phase-encoding system," J. Opt. Soc. Am. A 15, 2629-2638 (1998).
[CrossRef]

B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 36, 1054-1058 (1997).
[CrossRef] [PubMed]

P. Réfrégier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Opt. Lett. 20, 767-769 (1995).
[CrossRef] [PubMed]

B. Javidi, "Nonlinear joint power spectrum based optical correlation," Appl. Opt. 28, 2358-2367 (1989).
[CrossRef] [PubMed]

Juvells, I.

Kameda, M.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

Kotynski, R.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

Li, J.

Luo, Z.

Matoba, O.

Millán, M. S.

M. S. Millán, E. Pérez-Cabré, and B. Javidi, "Multifactor authentication reinforces optical security," Opt. Lett. 31, 721-723 (2006).
[CrossRef]

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

Montes-Usategui, M.

Morimoto, Y.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

Naughton, T. J.

T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004).
[CrossRef]

Nitanai, E.

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
[CrossRef]

Nomura, T.

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
[CrossRef]

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

Numata, T.

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
[CrossRef]

O’Gorman, L.

L. O’Gorman, "Comparing passwords, tokens, and biometrics for user authentication," Proc. IEEE 91, 2021-2040 (2003).
[CrossRef]

Okazaki, A.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

Pérez, E.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

Pérez-Cabré, E.

M. S. Millán, E. Pérez-Cabré, and B. Javidi, "Multifactor authentication reinforces optical security," Opt. Lett. 31, 721-723 (2006).
[CrossRef]

E. Pérez-Cabré and B. Javidi, "Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication," IEEE Trans. Veh. Technol. 54, 1295-1303 (2005).Q2
[CrossRef]

Réfrégier, P.

Réfrégier, Ph.

Singh, K.

G. Unnikrishnan and K. Singh, "Optical encryption using quadratic phase system," Opt. Commun. 193, 51-67 (2001).
[CrossRef]

Situ, G. H.

Styczynski, K.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

Tajahuerce, E.

Tebaldi, M.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
[CrossRef]

Torroba, R.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
[CrossRef]

J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005).
[CrossRef]

Towghi, N.

Unnikrishnan, G.

G. Unnikrishnan and K. Singh, "Optical encryption using quadratic phase system," Opt. Commun. 193, 51-67 (2001).
[CrossRef]

Verrall, S. C.

Yatagai, T.

Yoshikawa, N.

Zhang, G.

Zhang, J. J.

Appl. Opt. (6)

IEEE Circuits Devices Mag. (1)

O. Matoba and B. Javidi, "The keys to holographic data security," IEEE Circuits Devices Mag. 16, 8-15 (2000).
[CrossRef]

IEEE Trans. Veh. Technol. (1)

E. Pérez-Cabré and B. Javidi, "Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication," IEEE Trans. Veh. Technol. 54, 1295-1303 (2005).Q2
[CrossRef]

J. Mod. Opt. (1)

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, "Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results," J. Mod. Opt. 441535-1552 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (3)

G. Unnikrishnan and K. Singh, "Optical encryption using quadratic phase system," Opt. Commun. 193, 51-67 (2001).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, "Multiple image encryption using an aperture-modulated optical system," Opt. Commun. 261, 29-33 (2006).
[CrossRef]

J. F. Barrera, R. Henao, and R. Torroba, "Optical encryption method using toroidal zone plates," Opt. Commun. 248, 35-40 (2005).
[CrossRef]

Opt. Eng. (4)

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801 (2005).
[CrossRef]

T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004).
[CrossRef]

T. Nomura, E. Nitanai, T. Numata, and B. Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, 017006 (2005).
[CrossRef]

B. Javidi, "Real-time remote identification and verification of objects using optical ID tags," Opt. Eng. 42, 2346-2348 (2003).
[CrossRef]

Opt. Lett. (6)

Proc. IEEE (1)

L. O’Gorman, "Comparing passwords, tokens, and biometrics for user authentication," Proc. IEEE 91, 2021-2040 (2003).
[CrossRef]

Other (5)

E. Pérez-Cabré, M. S. Millán, and B. Javidi, "Design of distortion-invariant optical ID tags for remote identification and verification of objects," in Physics of the Automatic Target Recognition, F. Sadjadi and B. Javidi, eds. (Springer Verlag, 2007), Chap. 12.

E. Pérez-Cabré, M. S. Millán, and B. Javidi, "Remote optical ID tag recognition and verification using fully spatial phase multiplexing," Proc. SPIE 5986, 598602-1/13 (2005).
[CrossRef]

A. Mahalanobis, "A review of correlation filters and their application for scene matching," in Optoelectronic Devices and Systems for Processing (SPIE, CR65, Bellingham, WA, 1996).

F. Sadjadi, Automatic Target Recognition (SPIE, Bellingham, WA, 2000).

B. Javidi, Optical and Digital Techniques for Information Security (Springer, New York, 2005).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (1458 KB)     
» Media 2: MOV (4508 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(1.4 Mb) Movie of classified parcel surveillance by using multifactor authentication and NIR distortion-invariant optical ID tags (4.4 Mb version). [Media 1]

Fig. 2.
Fig. 2.

(a) Encryption of multiple primary images and codification into an invisible sign (NIR ID tag). (b) Readout and verification process.

Fig. 3.
Fig. 3.

(a). Signatures and key code to be encrypted; (b) Magnitude and phase distribution of the encrypted multifactor function.

Fig. 4.
Fig. 4.

Optical distortion-invariant ID tag (rotation angle 7 degrees) experimentally captured by using (a) a NIR XEVA camera and (b) a visible SONY 9100P camera. (c) Reference isosceles triangle of white spots.

Fig. 5.
Fig. 5.

Experimental and simulated results for the verification system by using distorted NIR multifactor ID tags: (a) Positive validation when the four identifying factors coincide with the information included in the ID tag; Negative results obtained when one (b) or more factors (c) do not coincide with the set of primary images; (d) Positive validation with a partially scratched ID tag. In all cases, verification outputs are normalized to the positive validation (a).

Tables (1)

Tables Icon

Table 1. Experimental and simulated results for the multifactor verification system. The maximum intensity peak value of the output plane of the verification system is given for different situations. Values are normalized to the positive validation which is when the four factors coincide with the authorized factors included in the captured ID tag.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x ) = t r + 2 b ( x ) t s ( x ) 𝔽 1 [ t n ( x ) ] ,
AC POF [ t s ( x ) ] AC PPC * [ t r + 2 b ( x ) ] AC CMF * [ T n ( x ) ] 2 ,

Metrics