Abstract

Both quasi-TE and TM polarisation spectra for a silicon-on-insulator (SOI) waveguide are recorded over (1100-1700)nm using a broadband supercontinuum source. By studying both the input and output polarisation eigenstates we observe narrowband resonant cross coupling near the lowest quasi-TE mode cut-off. We also observe relatively broadband mixing between the two eigenstates to generate a complete photonic bandgap. By careful analysis of the output polarisation state we report on an inherent non-reciprocity between quasi TE and TM fundamental mode cross coupling. The nature of polarisation distinction in such bandgap structures is discussed in the context of polarisation scattering at an interface.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, “Recent Progresses and Future Prospects of Two- and Three-Dimensional Photonic Crystals,” J. Lightwave Technol. 24, 4554–4567, (2000)
    [Crossref]
  2. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  3. L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004).
    [Crossref] [PubMed]
  4. P.I. Borel, B. Bilenberg, L.H. Frandsen, T. Nielsen, J. Fage-Pedersen, A.V. Lavrinenko, J.S. Jensen, O. Sigmund, and A. Kristensen, ”Imprinted silicon-based nanophotonics,” Opt. Express 15, 1261–1266, (2007)
    [Crossref] [PubMed]
  5. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
    [Crossref]
  6. Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
    [Crossref]
  7. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol,  24, 46100–4615, (2006)
    [Crossref]
  8. E. Dulkeith, S.J. McNab, and Y.A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B. 72, 11572, (2005)
    [Crossref]
  9. P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004)
    [Crossref] [PubMed]
  10. A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
    [Crossref] [PubMed]
  11. K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
    [Crossref]
  12. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, ”Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248, (2004)
    [Crossref] [PubMed]
  13. http://www.photond.com/products/crystalwave.htm
  14. S.G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001)
    [Crossref] [PubMed]
  15. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)
  16. J. Canning and D. Moss, “Grating-based transmission bandpass filters using dispersion matched mode conversion,” Opt. Lett.,  23, 174–176, (1998)
    [Crossref]
  17. M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
    [Crossref]
  18. M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
    [Crossref]
  19. D.N. Chigrin, A.V. Lavrinenko, and C.M.S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341, (2005)
    [Crossref]
  20. S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
    [Crossref]
  21. S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
    [Crossref]
  22. L.C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114, (2006)
    [Crossref]
  23. Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
    [Crossref]
  24. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Analysis of a line-defect waveguide on a silicon-on-insulator two dimensional photonic crystal slab,” J. lightwave Technol. 22, 2787–2792, (2004)
    [Crossref]
  25. C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibres,” J. Appl. Phys. 76, 680, (1994)
    [Crossref]
  26. I. Bassett and A. Argyros, “Elimination of polarisation degeneracy in round waveguides,” Opt. Express 10, 1342–1346, (2002)
    [PubMed]
  27. RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
    [Crossref] [PubMed]
  28. P. Weiss, “Straining for speed: In search of faster electronics, chipmakers contort silicon crystals,” Science News Online 165, 136 (2004) and refs therein.

2007 (3)

P.I. Borel, B. Bilenberg, L.H. Frandsen, T. Nielsen, J. Fage-Pedersen, A.V. Lavrinenko, J.S. Jensen, O. Sigmund, and A. Kristensen, ”Imprinted silicon-based nanophotonics,” Opt. Express 15, 1261–1266, (2007)
[Crossref] [PubMed]

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
[Crossref]

2006 (4)

L.C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114, (2006)
[Crossref]

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol,  24, 46100–4615, (2006)
[Crossref]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

2005 (5)

E. Dulkeith, S.J. McNab, and Y.A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B. 72, 11572, (2005)
[Crossref]

A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
[Crossref] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

D.N. Chigrin, A.V. Lavrinenko, and C.M.S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341, (2005)
[Crossref]

2004 (6)

2003 (2)

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

2002 (1)

2001 (3)

S.G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001)
[Crossref] [PubMed]

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
[Crossref]

2000 (1)

1998 (1)

1994 (1)

C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibres,” J. Appl. Phys. 76, 680, (1994)
[Crossref]

Akahane, Y.

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

Anand, S.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Andersen, KN.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Andreani, L.C.

L.C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114, (2006)
[Crossref]

Argyros, A.

Asano, T.

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Analysis of a line-defect waveguide on a silicon-on-insulator two dimensional photonic crystal slab,” J. lightwave Technol. 22, 2787–2792, (2004)
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

Aslund, M.

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

Åslund, M.

M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
[Crossref]

Bassett, I.

Bassett, I. M.

C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibres,” J. Appl. Phys. 76, 680, (1994)
[Crossref]

Bilenberg, B.

Bjarklev, A.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Borel, P. I.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, ”Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248, (2004)
[Crossref] [PubMed]

Borel, P.I

A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
[Crossref] [PubMed]

Borel, P.I.

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

Canning, J.

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
[Crossref]

J. Canning and D. Moss, “Grating-based transmission bandpass filters using dispersion matched mode conversion,” Opt. Lett.,  23, 174–176, (1998)
[Crossref]

Cerrina, F.

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

Chigrin, D.N.

S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
[Crossref]

D.N. Chigrin, A.V. Lavrinenko, and C.M.S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341, (2005)
[Crossref]

de Sterke, C. M.

C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibres,” J. Appl. Phys. 76, 680, (1994)
[Crossref]

de Sterke, C.M.

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

de Sterke, M.

M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
[Crossref]

Dulkeith, E.

E. Dulkeith, S.J. McNab, and Y.A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B. 72, 11572, (2005)
[Crossref]

Dunbar, L. A.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Fage-Pedersen, J.

P.I. Borel, B. Bilenberg, L.H. Frandsen, T. Nielsen, J. Fage-Pedersen, A.V. Lavrinenko, J.S. Jensen, O. Sigmund, and A. Kristensen, ”Imprinted silicon-based nanophotonics,” Opt. Express 15, 1261–1266, (2007)
[Crossref] [PubMed]

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol,  24, 46100–4615, (2006)
[Crossref]

Ferrini, R.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, ”Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248, (2004)
[Crossref] [PubMed]

Frandsen, L.H.

P.I. Borel, B. Bilenberg, L.H. Frandsen, T. Nielsen, J. Fage-Pedersen, A.V. Lavrinenko, J.S. Jensen, O. Sigmund, and A. Kristensen, ”Imprinted silicon-based nanophotonics,” Opt. Express 15, 1261–1266, (2007)
[Crossref] [PubMed]

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
[Crossref] [PubMed]

L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004).
[Crossref] [PubMed]

P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004)
[Crossref] [PubMed]

Gerace, D.

L.C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114, (2006)
[Crossref]

Hansen, O.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Harpøth, A.

Hatsuta, R.

Houdré, R.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Jacobsen, RS.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Jalali, B.

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol,  24, 46100–4615, (2006)
[Crossref]

Jensen, J.S.

Joannopoulos, J. D.

Johnson, S.G.

Judd, A.

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

Kim, M-K.

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

Kimerling, L.C.

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

Kitagaw, H.

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

Kristensen, A.

Kristensen, M.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
[Crossref] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

P.I. Borel, A. Harpøth, L.H. Frandsen, M. Kristensen, P. Shi, J.S. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004)
[Crossref] [PubMed]

L.H. Frandsen, A. Harpøth, P.I. Borel, M. Kristensen, J.S. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004).
[Crossref] [PubMed]

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, ”Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248, (2004)
[Crossref] [PubMed]

Kroha, J.

S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
[Crossref]

Lavrinenko, A.

Lavrinenko, A.V.

P.I. Borel, B. Bilenberg, L.H. Frandsen, T. Nielsen, J. Fage-Pedersen, A.V. Lavrinenko, J.S. Jensen, O. Sigmund, and A. Kristensen, ”Imprinted silicon-based nanophotonics,” Opt. Express 15, 1261–1266, (2007)
[Crossref] [PubMed]

S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
[Crossref]

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

D.N. Chigrin, A.V. Lavrinenko, and C.M.S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341, (2005)
[Crossref]

Lee, K.K.

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

Lee, Y-H.

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

Lim, D.R.

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

Luther-Davies, B.

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

Martz, J.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

McNab, S. J.

McNab, S.J.

E. Dulkeith, S.J. McNab, and Y.A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B. 72, 11572, (2005)
[Crossref]

Moss, D.

Moulin, G.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Mulot, M.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Nielsen, T.

Niemi, T.

Noda, S.

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Analysis of a line-defect waveguide on a silicon-on-insulator two dimensional photonic crystal slab,” J. lightwave Technol. 22, 2787–2792, (2004)
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

S. Noda, “Recent Progresses and Future Prospects of Two- and Three-Dimensional Photonic Crystals,” J. Lightwave Technol. 24, 4554–4567, (2000)
[Crossref]

Nüesch, F.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Ou, H.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Peucheret, C.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Poladian, L.

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
[Crossref]

Rode, A.

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

Ruan, Y.

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

Shi, P.

Shin, J.

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

Sigmund, O.

Song, B-S.

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

Street, A. G.

C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibres,” J. Appl. Phys. 76, 680, (1994)
[Crossref]

Takayama, S.

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

Tanaka, Y.

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Analysis of a line-defect waveguide on a silicon-on-insulator two dimensional photonic crystal slab,” J. lightwave Technol. 22, 2787–2792, (2004)
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

Tetu, A.

A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
[Crossref] [PubMed]

Thorhauge, M.

Torres, C.M.S.

D.N. Chigrin, A.V. Lavrinenko, and C.M.S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341, (2005)
[Crossref]

Vlasov, Y. A.

Vlasov, Y.A.

E. Dulkeith, S.J. McNab, and Y.A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B. 72, 11572, (2005)
[Crossref]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

Weiss, P.

P. Weiss, “Straining for speed: In search of faster electronics, chipmakers contort silicon crystals,” Science News Online 165, 136 (2004) and refs therein.

Wild, B.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

Zhukovsky, S.V.

S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
[Crossref]

Zsigri, B.

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Zuppiroli, L.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

App. Phys. Lett. (1)

Y. Ruan, M-K. Kim, Y-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” App. Phys. Lett.,  90, 071102 (2007)
[Crossref]

Appl. Opt.-LP (1)

M. Aslund, J. Canning, C.M. de Sterke, L. Poladian, and A. Judd, “Antisymmetric Grating Coupler: Experimental Results,” Appl. Opt.-LP,  42, 6578–6582, (2003)
[Crossref]

Appl. Phys. Lett. (2)

S. Takayama, H. Kitagaw, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 81, 061107, (2005)
[Crossref]

Y. Tanaka, T. Asano, Y. Akahane, B-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663, (2003)
[Crossref]

J. Appl. Phys. (2)

C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibres,” J. Appl. Phys. 76, 680, (1994)
[Crossref]

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys.,  99, 101531, (2006)
[Crossref]

J. Lightwave Technol (1)

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol,  24, 46100–4615, (2006)
[Crossref]

J. Lightwave Technol. (1)

Nature (1)

RS. Jacobsen, KN. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202, (2006)
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

J. Canning and D. Moss, “Grating-based transmission bandpass filters using dispersion matched mode conversion,” Opt. Lett.,  23, 174–176, (1998)
[Crossref]

K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction,” Opt. Lett.,  26, 188–190, (2001)
[Crossref]

Opt. Quantum Electron. (1)

D.N. Chigrin, A.V. Lavrinenko, and C.M.S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341, (2005)
[Crossref]

Optics Express (1)

A. Tetu, M. Kristensen, L.H. Frandsen, A. Harpøth, P.I Borel, J.S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Optics Express 13, 8606–8611 (2005)
[Crossref] [PubMed]

Phot. Technol. Lett. (1)

M. Åslund, L. Poladian, J. Canning, and M. de Sterke, “Add-drop multiplexing by grating induced dispersion in multi-mode interference device,” Phot. Technol. Lett. 13, 969–971 (2001)
[Crossref]

Phys. Rev. (1)

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. 3, 72, 035118, (2005)

Phys. Rev. B (1)

L.C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114, (2006)
[Crossref]

Phys. Rev. B. (1)

E. Dulkeith, S.J. McNab, and Y.A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B. 72, 11572, (2005)
[Crossref]

Physica Status Solidi (b) (1)

S.V. Zhukovsky, D.N. Chigrin, A.V. Lavrinenko, and J. Kroha, “Selective lasing in multimode periodic and non-periodic nanopillar waveguides,” Physica Status Solidi (b) 244, 1211–1218, (2007)
[Crossref]

Science News Online (1)

P. Weiss, “Straining for speed: In search of faster electronics, chipmakers contort silicon crystals,” Science News Online 165, 136 (2004) and refs therein.

Other (1)

http://www.photond.com/products/crystalwave.htm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of 50um long photonic crystal waveguide (DUT); (b) Schematic of setup used to characterise polarisation of the photonic crystal waveguide.

Fig. 2
Fig. 2

a) Transmission spectra with both input and output P set on TE, b) Transmission spectra with input P set to launch TE and output P set to measure TM; c) Transmission spectra with both input and output P set on TM; d) Transmission spectra with input P set to launch TM and output P set to measure TE. A – optical fibre cut-off ~1270nm, B – attributed to TM stopgap; C – resonant spike.

Fig. 3.
Fig. 3.

On the left is the calculated band diagram (resolution = Λ/16) for the photonic crystal waveguide; on the right hand side is the corresponding FDTD transmission simulation superposed on the measured transmission spectra of TE-TE and TM-TM of the PhC waveguide. Note that the graphs show normalized frequency for comparison with standard bandgap calculations rather than wavelength (λ = 0.37/Λ).

Fig. 4.
Fig. 4.

FDTD simulation of relative conversion of Ex (TE) into Ey (TM) for the structure shown in figure 1. The conversion is normalised to the initial input Ey.

Fig. 5.
Fig. 5.

(a) TE data with output polariser on 45°; (b) TM date with output polariser 45 ; (c) Difference between TE and TM transmission spectra.

Fig. 6.
Fig. 6.

(a) TE and TM transmission normalised against unpolarised light through the photonic crystal waveguide; (b) When plotted against inverse wavelength, characteristic features of polarisation scattering from an interface are observed up to the band edge. Resonant effects beyond the edge are also visible.

Metrics