Abstract

We report on environmentally stable mode-locked Yb-doped all-fiber lasers operating in the wave-breaking-free and stretched-pulse regime. The compact linear cavity is constructed with saturable absorber mirror directly glued to the fibers end-facet as nonlinear mode-locking mechanism and chirped fiber Bragg grating for dispersion management, thus, without any free-space optics. In the wave-breaking-free regime the laser generates positively-chirped pulses with a pulse duration of 15.4 ps. These pulses are compressed to 218 fs in a hollow-core photonic bandgap fiber spliced to the output port. Adaptation of dispersion management has led to operation in the stretched-pulse regime, where a parabolic spectral profile is obtained as well. In this regime pulses are compressible to 213 fs. Numerical simulations are presented which confirm the wave-breaking-free and stretched-pulse evolution inside the fiber laser cavity. Both regimes are compared in terms of pulse quality.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]
  2. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
    [CrossRef]
  3. B. Ortaç, J. Limpert, and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149 (2007).
    [CrossRef] [PubMed]
  4. G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20, 1289-1291 (1995).
    [CrossRef] [PubMed]
  5. L. Lefort, J. Price, D. Richardson, G. Spühler, R. Paschotta, U. Keller, A. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
    [CrossRef]
  6. B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, "90 fs generation from a stretched-pulse ytterbium doped fiber laser," Opt. Lett. 28, 1305 (2003).
    [CrossRef] [PubMed]
  7. A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
    [CrossRef]
  8. F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  9. J. Dudley, A. C. Peacock, V. I. Kruglov, B. C. Thomsen, J. D. Harvey, M. E. Fermann, G. Sucha, and D. Harter, "Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators," in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WP4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2001-WP4>
  10. F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
    [CrossRef]
  11. J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30,1888-1890 (2005).
    [CrossRef] [PubMed]
  12. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  13. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
    [CrossRef]
  14. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulation," Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  15. G. Martel, C. Chedot, V. Reglier, A. Hideur, B. Ortaç, and P. Grelu"On the possibility of observing bound soliton pairs in a "wave-breaking-free" mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
    [CrossRef] [PubMed]
  16. T. Schreiber, C. K. Nielsen, B. Ortaç, J. Limpert, and A. Tünnermann, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576, (2006).
    [CrossRef] [PubMed]
  17. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-Compact Dispersion Compensated Femtosecond Fiber Oscillators and Amplifiers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThG1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CThG1>.

2007 (3)

2006 (2)

T. Schreiber, C. K. Nielsen, B. Ortaç, J. Limpert, and A. Tünnermann, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576, (2006).
[CrossRef] [PubMed]

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

2005 (2)

2004 (2)

A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

2003 (2)

2002 (1)

1995 (2)

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20, 1289-1291 (1995).
[CrossRef] [PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Albert, A.

A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

Barthélémy, A.

A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

Brunel, M.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, "90 fs generation from a stretched-pulse ytterbium doped fiber laser," Opt. Lett. 28, 1305 (2003).
[CrossRef] [PubMed]

Buckley, J.

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
[CrossRef] [PubMed]

Buckley, J. R.

Chartier, T.

Chedot, C.

G. Martel, C. Chedot, V. Reglier, A. Hideur, B. Ortaç, and P. Grelu"On the possibility of observing bound soliton pairs in a "wave-breaking-free" mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
[CrossRef] [PubMed]

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Clark, W.

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
[CrossRef] [PubMed]

Couderc, V.

A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

Fry, A.

Grelu, P.

Haus, H. A.

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20, 1289-1291 (1995).
[CrossRef] [PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Hideur, A.

Hohmuth, R.

Ilday, F. Ö.

Ippen, E. P.

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20, 1289-1291 (1995).
[CrossRef] [PubMed]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Keller, U.

Lefort, L.

A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

L. Lefort, J. Price, D. Richardson, G. Spühler, R. Paschotta, U. Keller, A. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
[CrossRef]

Lenz, G.

Lim, H.

Limpert, J.

Martel, G.

G. Martel, C. Chedot, V. Reglier, A. Hideur, B. Ortaç, and P. Grelu"On the possibility of observing bound soliton pairs in a "wave-breaking-free" mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
[CrossRef] [PubMed]

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Nielsen, C. K.

Ortaç, B.

Özkul, C.

Paschotta, R.

Price, J.

Reglier, V.

Richardson, D.

Richter, W.

Sanchez, F.

Schreiber, T.

Sosnowski, T.

Spühler, G.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20, 1289-1291 (1995).
[CrossRef] [PubMed]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Tünnermann, A.

Weston, J.

Wise, F. W.

Appl. Phys. B (1)

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Albert, V. Couderc, L. Lefort, and A. Barthélémy, "High energy femtosecond pulses from an ytterbium doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416-418 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30,1888-1890 (2005).
[CrossRef] [PubMed]

G. Martel, C. Chedot, V. Reglier, A. Hideur, B. Ortaç, and P. Grelu"On the possibility of observing bound soliton pairs in a "wave-breaking-free" mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
[CrossRef] [PubMed]

T. Schreiber, C. K. Nielsen, B. Ortaç, J. Limpert, and A. Tünnermann, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576, (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
[CrossRef] [PubMed]

B. Ortaç, J. Limpert, and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149 (2007).
[CrossRef] [PubMed]

G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20, 1289-1291 (1995).
[CrossRef] [PubMed]

L. Lefort, J. Price, D. Richardson, G. Spühler, R. Paschotta, U. Keller, A. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002).
[CrossRef]

B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, "90 fs generation from a stretched-pulse ytterbium doped fiber laser," Opt. Lett. 28, 1305 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Other (2)

J. Dudley, A. C. Peacock, V. I. Kruglov, B. C. Thomsen, J. D. Harvey, M. E. Fermann, G. Sucha, and D. Harter, "Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators," in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WP4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2001-WP4>

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-Compact Dispersion Compensated Femtosecond Fiber Oscillators and Amplifiers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThG1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CThG1>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of the passively mode-locked Yb-doped polarization-maintaining single-mode all-fiber laser with fiber-based extra-cavity pulse compression. PM: polarization-maintaining; SAM: saturable absorber mirror; CFBG: chirped fiber Bragg grating; HC-PBG: hollow-core photonic bandgap fiber.

Fig. 2.
Fig. 2.

Optical spectrum of the wave-breaking-free pulses The open circles are a theoretical fit for a parabolic pulse shape. Closed squares are for a Gaussian fit and closed triangles correspond to a sech2 fit.

Fig. 3.
Fig. 3.

(a) Autocorrelation trace of the chirped wave-breaking-free pulses. (b) Autocorrelation trace of the compressed pulses using a HC-BGP fiber (solid line) compared to the transmission bulk grating compression (dashed line).

Fig. 4.
Fig. 4.

(a) Simulation of the intra-cavity wave-breaking-free pulse evolution in the spectral and temporal domain. (SAM- saturable absorber mirror, SMF-passive single mode fiber, DC-chirped FBG for dispersion compensation), (b) Spectrum at the output port. (logarithmic scale: -30 dB oe-15-23-15595-i001 0 dB (max))

Fig. 5.
Fig. 5.

Optical spectrum of the wave-breaking-free pulses The open circles are a theoretical fit for a parabolic pulse shape. Closed squares are for a Gaussian fit and closed triangles correspond to a sech2 fit.

Fig. 6.
Fig. 6.

(a) Autocorrelation trace of the chirped stretched-pulses. (b) Autocorrelation trace of the compressed pulses using a HC-BGP fiber (solid line) compared to the transmission bulk grating compression (dashed line).

Fig. 7.
Fig. 7.

(a) Simulation of the intra-cavity stretched-pulse evolution in the spectral and temporal domain. (SAM- saturable absorber mirror, SMF-passive single mode fiber, DC-chirped FBG for dispersion compensation), (b) Spectrum at the output port. (logarithmic scale: -30 dB oe-15-23-15595-i002 0 dB (max))

Metrics