Abstract

We propose an arbitrary-to-linear or linear-to-arbitrary polarization controller based on the mutual action of Faraday and Pockels effects in a single Bi4Ge3O12 (BGO) crystal after the wave coupling theory describing these two effects. It is demonstrated that, the expected conversion of arbitrary-to-linear or linear-to-arbitrary polarization state of light can be realized by adjusting the applied electric and magnetic fields.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates

Yang Zhang, Changxi Yang, Shiguang Li, He Yan, Jingchan Yin, Claire Gu, and Guofan Jin
Opt. Express 14(8) 3484-3490 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
    [Crossref]
  2. N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
    [Crossref]
  3. A. V. Krishnamoorthy, F. Xu, J. E. Ford, and Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
    [Crossref] [PubMed]
  4. C. D. Poole, “Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling,” Opt. Lett. 14, 523–525 (1989).
    [Crossref] [PubMed]
  5. T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
    [Crossref]
  6. R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
    [Crossref]
  7. R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Gungener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers,” J. Lightwave Technol. 17, 1602–1616 (1999).
    [Crossref]
  8. G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
    [Crossref] [PubMed]
  9. B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
    [Crossref] [PubMed]
  10. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
    [Crossref]
  11. J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
    [Crossref] [PubMed]
  12. T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
    [Crossref]
  13. W. A. Bonner and B. D. Bean, “Asymmetric photolysis with elliptically polarized light,” Orig. Life Evol. Biosphere 30, 513–517 (2000).
    [Crossref]
  14. W. H. J. Aarts and G. -D. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7, 1033–1043 (1989).
    [Crossref]
  15. F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
    [Crossref]
  16. H. Shimizu and K. Kaede, “Endless polarization controller using electro-optic waveplates,” Electron. Lett. 24, 412–413 (1988).
    [Crossref]
  17. J. Prat, J. Comellas, and G. Junyent, “Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation,” Photon. Technol. Lett. 7, 1430–1432 (1995).
    [Crossref]
  18. D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
    [Crossref]
  19. X. S. Yao, L. Yan, and Y. Shi, “Highly repeatable all-solid-state polarization-state generator,” Opt. Lett. 30, 1324–1326 (2005).
    [Crossref] [PubMed]
  20. Y. Zhang, C. Yang, S. Li, H. Yan, J Yin, C. Gu, and G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14, 3484–3490 (2006).
    [Crossref] [PubMed]
  21. T. Saitoh and S. Kinugawa, “Magnetic field rotating-type Faraday polarization controller,” Photon. Technol. Lett. 15, 1404–1406 (2003).
    [Crossref]
  22. S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for coherent fiber-optic systems using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
    [Crossref]
  23. Z. Zhuang, S. -W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24, 694–696 (1999).
    [Crossref]
  24. X. Chen, L. Yan, and X. S. Yao, “Waveplate analyzer using binary magneto-optic rotators,” Opt. Express 15, 12989–12994 (2007)
    [Crossref] [PubMed]
  25. L. Chen, G. Zheng, and W. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A. 75, 061403(R) (2007).
    [Crossref]
  26. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, “Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12),” Appl. Opt. 35, 3562–3569 (1996).
    [Crossref] [PubMed]
  27. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, 1984).
  28. W. She and W. Lee, “Wave coupling theory of linear electroopitc effect,” Opt. Commun. 195, 303–311 (2001).
    [Crossref]
  29. H. Wang, W. Jia, and J. Shen, “Magneto-optical Faraday rotation in Bi4Ge3O12 crystal,” Acta Phys. Sin. 34, 126–128 (1985).
  30. R. Nitsche, “Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys. 36, 2358–2360 (1965).
    [Crossref]
  31. D. P. Bortfeld and H. Meier, “Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12,” J. Appl. Phys. 43, 5110–5111 (1972).
    [Crossref]
  32. Z. Y. Guo, “Standard magnetic field source of automatic adjustment,” Metrology & Measurement Technique 30, 20–21 (2003).
  33. T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
    [Crossref]
  34. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Nat. Acad. Sci. 97, 4541–4550 (2000).
    [Crossref] [PubMed]

2007 (2)

X. Chen, L. Yan, and X. S. Yao, “Waveplate analyzer using binary magneto-optic rotators,” Opt. Express 15, 12989–12994 (2007)
[Crossref] [PubMed]

L. Chen, G. Zheng, and W. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A. 75, 061403(R) (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (2)

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

2003 (2)

T. Saitoh and S. Kinugawa, “Magnetic field rotating-type Faraday polarization controller,” Photon. Technol. Lett. 15, 1404–1406 (2003).
[Crossref]

Z. Y. Guo, “Standard magnetic field source of automatic adjustment,” Metrology & Measurement Technique 30, 20–21 (2003).

2002 (1)

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

2001 (3)

W. She and W. Lee, “Wave coupling theory of linear electroopitc effect,” Opt. Commun. 195, 303–311 (2001).
[Crossref]

B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
[Crossref] [PubMed]

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

2000 (4)

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

W. A. Bonner and B. D. Bean, “Asymmetric photolysis with elliptically polarized light,” Orig. Life Evol. Biosphere 30, 513–517 (2000).
[Crossref]

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Nat. Acad. Sci. 97, 4541–4550 (2000).
[Crossref] [PubMed]

1999 (2)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

J. Prat, J. Comellas, and G. Junyent, “Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation,” Photon. Technol. Lett. 7, 1430–1432 (1995).
[Crossref]

1994 (2)

F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
[Crossref]

T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
[Crossref]

1990 (2)

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[Crossref]

S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for coherent fiber-optic systems using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[Crossref]

1989 (2)

C. D. Poole, “Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling,” Opt. Lett. 14, 523–525 (1989).
[Crossref] [PubMed]

W. H. J. Aarts and G. -D. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7, 1033–1043 (1989).
[Crossref]

1988 (1)

H. Shimizu and K. Kaede, “Endless polarization controller using electro-optic waveplates,” Electron. Lett. 24, 412–413 (1988).
[Crossref]

1985 (1)

H. Wang, W. Jia, and J. Shen, “Magneto-optical Faraday rotation in Bi4Ge3O12 crystal,” Acta Phys. Sin. 34, 126–128 (1985).

1981 (1)

R. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
[Crossref]

1972 (1)

D. P. Bortfeld and H. Meier, “Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12,” J. Appl. Phys. 43, 5110–5111 (1972).
[Crossref]

1965 (1)

R. Nitsche, “Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys. 36, 2358–2360 (1965).
[Crossref]

Aarts, W. H. J.

W. H. J. Aarts and G. -D. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7, 1033–1043 (1989).
[Crossref]

Abraham, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

Alferness, R.

R. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
[Crossref]

Bean, B. D.

W. A. Bonner and B. D. Bean, “Asymmetric photolysis with elliptically polarized light,” Orig. Life Evol. Biosphere 30, 513–517 (2000).
[Crossref]

Becker, W.

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

Bjerre, N.

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

Bonner, W. A.

W. A. Bonner and B. D. Bean, “Asymmetric photolysis with elliptically polarized light,” Orig. Life Evol. Biosphere 30, 513–517 (2000).
[Crossref]

Borca, B.

B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
[Crossref] [PubMed]

Bortfeld, D. P.

D. P. Bortfeld and H. Meier, “Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12,” J. Appl. Phys. 43, 5110–5111 (1972).
[Crossref]

Casperson, L. W.

S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for coherent fiber-optic systems using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[Crossref]

Chen, L.

L. Chen, G. Zheng, and W. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A. 75, 061403(R) (2007).
[Crossref]

Chen, X.

Comellas, J.

J. Prat, J. Comellas, and G. Junyent, “Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation,” Photon. Technol. Lett. 7, 1430–1432 (1995).
[Crossref]

Conrad, D. C.

Day, G. W.

Dreischuh, A.

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

Eaton, G. H.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Ebrahimi, P.

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

Emura, K.

T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
[Crossref]

Fainman, Y.

Fischer, G.

Ford, J. E.

Friese, M. E. J.

Frolov, M. V.

B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
[Crossref] [PubMed]

Goldring, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Nat. Acad. Sci. 97, 4541–4550 (2000).
[Crossref] [PubMed]

Gottwald, E.

Grasbon, F.

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

Gu, C.

Gungener, C.

Guo, Z. Y.

Z. Y. Guo, “Standard magnetic field source of automatic adjustment,” Metrology & Measurement Technique 30, 20–21 (2003).

Haase, W.

Hald, K.

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

Hale, P. D.

Havstad, S. A.

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

Heckenberg, N. R.

Heismann, F.

F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
[Crossref]

Hinz, S.

Ishida, K.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Jia, W.

H. Wang, W. Jia, and J. Shen, “Magneto-optical Faraday rotation in Bi4Ge3O12 crystal,” Acta Phys. Sin. 34, 126–128 (1985).

Jin, G.

Jones, M. D.

S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for coherent fiber-optic systems using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[Crossref]

Junyent, G.

J. Prat, J. Comellas, and G. Junyent, “Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation,” Photon. Technol. Lett. 7, 1430–1432 (1995).
[Crossref]

Kaede, K.

H. Shimizu and K. Kaede, “Endless polarization controller using electro-optic waveplates,” Electron. Lett. 24, 412–413 (1988).
[Crossref]

Kato, M.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Kawamura, N.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Khoe, G. -D.

W. H. J. Aarts and G. -D. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7, 1033–1043 (1989).
[Crossref]

Khosravani, R.

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

Kinugawa, S.

T. Saitoh and S. Kinugawa, “Magnetic field rotating-type Faraday polarization controller,” Photon. Technol. Lett. 15, 1404–1406 (2003).
[Crossref]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Nat. Acad. Sci. 97, 4541–4550 (2000).
[Crossref] [PubMed]

Kopold, R.

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Kudo, K.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Kurosawa, K.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Lai, T.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, 1984).

Larsen, J. J.

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

Lee, K. S.

Lee, W.

W. She and W. Lee, “Wave coupling theory of linear electroopitc effect,” Opt. Commun. 195, 303–311 (2001).
[Crossref]

Lei, L.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

Li, S.

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, 1984).

Lin, W.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

Liu, L.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

Manakov, N. L.

B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
[Crossref] [PubMed]

Matsuda, Y.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Matsuzaki, T.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Meier, H.

D. P. Bortfeld and H. Meier, “Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12,” J. Appl. Phys. 43, 5110–5111 (1972).
[Crossref]

Mendlovic, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

Mirvoda, V.

Nagamine, K.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Nakamura, S. N.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Nieminen, T. A.

Nitsche, R.

R. Nitsche, “Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys. 36, 2358–2360 (1965).
[Crossref]

Noe, R.

Ono, T.

T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
[Crossref]

Patel, J. S.

Paulus, G. G.

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

Poole, C. D.

Prat, J.

J. Prat, J. Comellas, and G. Junyent, “Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation,” Photon. Technol. Lett. 7, 1430–1432 (1995).
[Crossref]

Rose, A. H.

Rubinsztein-Dunlop, H.

Rumbaugh, S. H.

S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for coherent fiber-optic systems using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[Crossref]

Saitoh, T.

T. Saitoh and S. Kinugawa, “Magnetic field rotating-type Faraday polarization controller,” Photon. Technol. Lett. 15, 1404–1406 (2003).
[Crossref]

Sandel, D.

Scheerer, C.

Schopflin, A.

Seideman, T.

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

Shabtay, G.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

She, W.

L. Chen, G. Zheng, and W. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A. 75, 061403(R) (2007).
[Crossref]

W. She and W. Lee, “Wave coupling theory of linear electroopitc effect,” Opt. Commun. 195, 303–311 (2001).
[Crossref]

Shen, J.

H. Wang, W. Jia, and J. Shen, “Magneto-optical Faraday rotation in Bi4Ge3O12 crystal,” Acta Phys. Sin. 34, 126–128 (1985).

Shi, Y.

Shimizu, H.

T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
[Crossref]

H. Shimizu and K. Kaede, “Endless polarization controller using electro-optic waveplates,” Electron. Lett. 24, 412–413 (1988).
[Crossref]

Shou, Q.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

Song, Y. W.

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

Stapelfeldt, H.

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

Starace, A. F.

B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
[Crossref] [PubMed]

Sugai, H.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Suh, S. -W.

Takeda, N.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Tanase, M.

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Walker, G. R.

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[Crossref]

Walker, N. G.

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[Crossref]

Walther, H.

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

Wang, H.

H. Wang, W. Jia, and J. Shen, “Magneto-optical Faraday rotation in Bi4Ge3O12 crystal,” Acta Phys. Sin. 34, 126–128 (1985).

Weyrauch, T.

Williams, P. A.

Willner, A. E.

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

Xu, F.

Yamazaki, S.

T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
[Crossref]

Yan, H.

Yan, L.

Yang, C.

Yao, X. S.

Yin, J

Yoshida-Dierolf, M.

Zalevsky, Z.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

Zhang, Y.

Zheng, G.

L. Chen, G. Zheng, and W. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A. 75, 061403(R) (2007).
[Crossref]

Zhuang, Z.

Acta Phys. Sin. (1)

H. Wang, W. Jia, and J. Shen, “Magneto-optical Faraday rotation in Bi4Ge3O12 crystal,” Acta Phys. Sin. 34, 126–128 (1985).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85, 4040–4042 (2004).
[Crossref]

Electron. Lett. (1)

H. Shimizu and K. Kaede, “Endless polarization controller using electro-optic waveplates,” Electron. Lett. 24, 412–413 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Alferness, “Electrooptic guided-wave device for general polarization transformations,” IEEE J. Quantum Electron. 17, 965–969 (1981).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Lett. 13, 1370–1372 (2001).
[Crossref]

J. Appl. Phys. (2)

R. Nitsche, “Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys. 36, 2358–2360 (1965).
[Crossref]

D. P. Bortfeld and H. Meier, “Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12,” J. Appl. Phys. 43, 5110–5111 (1972).
[Crossref]

J. Lightwave Technol. (6)

T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, “Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems,” J. Lightwave Technol. 12, 891–898 (1994).
[Crossref]

S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, “Polarization control for coherent fiber-optic systems using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990).
[Crossref]

R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Gungener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers,” J. Lightwave Technol. 17, 1602–1616 (1999).
[Crossref]

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990).
[Crossref]

W. H. J. Aarts and G. -D. Khoe, “New endless polarization control method using three fiber squeezers,” J. Lightwave Technol. 7, 1033–1043 (1989).
[Crossref]

F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
[Crossref]

J. Opt. A (1)

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A 6, 98–105 (2004).
[Crossref]

Metrology & Measurement Technique (1)

Z. Y. Guo, “Standard magnetic field source of automatic adjustment,” Metrology & Measurement Technique 30, 20–21 (2003).

Opt. Commun. (1)

W. She and W. Lee, “Wave coupling theory of linear electroopitc effect,” Opt. Commun. 195, 303–311 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Orig. Life Evol. Biosphere (1)

W. A. Bonner and B. D. Bean, “Asymmetric photolysis with elliptically polarized light,” Orig. Life Evol. Biosphere 30, 513–517 (2000).
[Crossref]

Photon. Technol. Lett. (2)

J. Prat, J. Comellas, and G. Junyent, “Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation,” Photon. Technol. Lett. 7, 1430–1432 (1995).
[Crossref]

T. Saitoh and S. Kinugawa, “Magnetic field rotating-type Faraday polarization controller,” Photon. Technol. Lett. 15, 1404–1406 (2003).
[Crossref]

Phys. Lett. B (1)

T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, “First observation of radiative photons associated with the μ- transfer process from tμ- to 3 He through an intermediate (t3Heμ-) mesomolecule,” Phys. Lett. B 527, 43–49 (2002).
[Crossref]

Phys. Rev. A. (1)

L. Chen, G. Zheng, and W. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A. 75, 061403(R) (2007).
[Crossref]

Phys. Rev. Lett. (3)

J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Phys. Rev. Lett. 85, 2470–2473 (2000).
[Crossref] [PubMed]

G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, “Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories,” Phys. Rev. Lett. 84, 3791–3794 (2000).
[Crossref] [PubMed]

B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, “Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light,” Phys. Rev. Lett. 87, 133001 (2001).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Nat. Acad. Sci. 97, 4541–4550 (2000).
[Crossref] [PubMed]

Other (1)

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The configuration of the BGO crystal and the directions of the two external fields.

Fig. 2.
Fig. 2.

Arbitrary-to-linear or linear-to-arbitrary SOP mapping algorithms on the Poincare sphere: V, vertical linear; H, horizontal linear; M, +45° linear; N, -45° linear; L, left-handed circular; R, right-handed circular; P1, an arbitrary input SOP; P3, an arbitrary output SOP; Q3, projection of P3 in S2OS3 plane. Conversion of arbitrary-to-linear polarization (blue lines): P1 → P2 mapping d/f = tanδ; P2 → V(or H) to 2(α-√f 2 + d 2 L)=, where s is an odd (even) integer. Conversion of linear to arbitrary polarization (red lines): H (or V)→P3 mapping ∠S2OQ3=2√f 2 + d 2 L and ∠S1OP3 = π + θ (or ∠S2OQ3=π-2-√f 2 + d 2 L and ∠S1OP3=θ).

Fig. 3.
Fig. 3.

Correspondence between applied fields and designated output SOP for horizontally linear polarization input: (a) Magnetic field (in Tesla) vs. designated output SOP; (b) Electric field (in kV/cm) vs. designated output SOP.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P ( 2 ) ( ω ) = P MO ( 2 ) ( ω ) + P EO ( 2 ) ( ω )
= i 2 ε 0 η MO ( 2 ) ω 0 : E 1 ( r ) B ( 0 exp ( i k 1 r ) + i 2 ε 0 η MO ( 2 ) ω 0 : E 2 ( r ) B ( 0 ) exp ( ik 2 r )
+ 2 ε 0 χ EO ( 2 ) ω 0 : E 1 ( r ) E ( 0 ) exp ( i k 1 r ) + 2 ε 0 χ EO ( 2 ) ω 0 : E 2 ( r ) E ( 0 ) exp ( ik 2 r ) .
dE 1 ( r ) dr = ( f B n 1 i d 1 ) E 2 ( r ) exp ( i Δ k ) i d 2 E 1 ( r ) ,
dE 2 ( r ) dr = ( f B n 2 i d 3 ) E 1 ( r ) exp ( i Δ k ) i d 4 E 2 ( r ) .
dE 1 ( r ) dr = ( f id ) E 2 ( r ) , d E 2 ( r ) dr = ( f id ) E 1 ( r ) .
E 1 ( L ) = cos α cos ( f 2 + d 2 L ) + sin α sin ( f 2 + d 2 L ) exp [ i ( δ θ ) ] ,
E 2 ( L ) = sin α cos ( f 2 + d 2 L ) exp ( ) cos α sin ( f 2 + d 2 L ) exp ( ) ,
B 0 = ( 2 α ) vL 1 + tan 2 δ , E 0 = ( 2 α ) tan δ τL 1 + tan 2 δ .
E 1 ( L ) = cos ( f 2 + d 2 L ) , E 2 ( L ) = sin ( f 2 + d 2 L ) exp [ i ( π + θ ) ] ,
S 1 = cos ( 2 f 2 + d 2 L ) ,
S 2 = sin ( 2 f 2 + d 2 L ) cos ( π + θ ) ,
S 3 = sin ( 2 f 2 + d 2 L ) sin ( π + θ ) .
B 0 = S 2 cos 1 S 1 2 vL 1 S 1 2 , E 0 = S 3 cos 1 S 1 2 τL 1 S 1 2 .
S 1 = 1 sin 2 ( 2 tan 1 e ) 1 + tan 2 2 ψ ,
S 2 = tan 2 ψ 1 sin 2 ( 2 tan 1 e ) 1 + tan 2 2 ψ ,
S 3 = sin ( 2 tan 1 e ) ,
B 0 = S 2 ( π cos 1 S 1 ) 2 vL 1 S 1 2 , E 0 = S 3 ( π cos 1 S 1 ) 2 τL 1 S 1 2 ,

Metrics