Abstract

A novel Zn-indiffused mode converter has been proposed and experimentally studied in an x-cut/z-propagation lithium niobate at a wavelength of 0.632 μm for the first time. The optimized phase-matching and mode-conversion voltages for maximum conversion are 12 V and -5 V, respectively. The results show that the proposed mode converter can operate with a stable conversion efficiency of about 99.5% between TM and TE polarizations at a throughput power of 25 μW in a period of 60 min. Moreover, a comparison of optical power-handling stability between the Ti-indiffused and the Zn-indiffused channel waveguides, was explored. The encouraging results indicate that the Zn-indiffused waveguide has better power stability than the Ti-indiffused waveguide. Thus, it is expected that the proposed mode converter will have better stability than the conventional Ti-indiffused ones, especially in the visible wavelength region.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
    [CrossRef]
  2. R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
    [CrossRef]
  3. S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
    [CrossRef]
  4. T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
    [CrossRef]
  5. R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
    [CrossRef]
  6. N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
    [CrossRef]
  7. T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
    [CrossRef]
  8. Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
  9. T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
    [CrossRef]
  10. H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
    [CrossRef]
  11. Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
    [CrossRef]
  12. T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993).
  13. J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
    [CrossRef]
  14. B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
    [CrossRef]
  15. R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
    [CrossRef]
  16. I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
    [CrossRef]
  17. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
    [CrossRef]

2007

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
[CrossRef]

2005

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
[CrossRef]

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

1995

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

1994

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

1993

1992

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

1988

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

1985

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

1982

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

1981

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

Alferness, R. C.

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

Buhl, L. L.

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

Bull, J. D.

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

Cao, X.

Connors, J. M.

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Cui, X.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Dyes, W. A.

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Fujii, Y.

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Fujiwara, T.

T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993).

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Haas, B. M.

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

Hayashi, I.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Ikeda, A.

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).

Kawazoe, T.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Kiuchi, K.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Kong, Y.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Li, C.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Lin, W. S.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Liu, F. K.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Matesanz, R.

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Ming,

Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
[CrossRef]

Mori, H.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Murphy, T. E.

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

Nagata, H.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Nicolas, J. D.

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

Ogiwara, J.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Otsuka, Y.

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).

Ramaswamy, R. V.

Sanford, N. A.

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Sato, S.

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Satoh, K.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Shimotsu, S.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Srivastava, R.

Suárez, I.

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Thaniyavarn, S.

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

Twu, R. C.

R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
[CrossRef]

Wang, H.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Wang, T. J.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Yamaguchi, I.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yokota, M.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yoshino, T.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Appl. Phys. Lett.

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Biosens. Bioelectron.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

E

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).

IEEE J. Quantum Electron.

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

IEEE Trans. Power Del.

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

J. Appl. Phys.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

J. Lightwave Technol.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Opt. Lett.

Optics Express

Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
[CrossRef]

Sens. Actuators B-Chem.

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics