Abstract

A novel Zn-indiffused mode converter has been proposed and experimentally studied in an x-cut/z-propagation lithium niobate at a wavelength of 0.632 μm for the first time. The optimized phase-matching and mode-conversion voltages for maximum conversion are 12 V and -5 V, respectively. The results show that the proposed mode converter can operate with a stable conversion efficiency of about 99.5% between TM and TE polarizations at a throughput power of 25 μW in a period of 60 min. Moreover, a comparison of optical power-handling stability between the Ti-indiffused and the Zn-indiffused channel waveguides, was explored. The encouraging results indicate that the Zn-indiffused waveguide has better power stability than the Ti-indiffused waveguide. Thus, it is expected that the proposed mode converter will have better stability than the conventional Ti-indiffused ones, especially in the visible wavelength region.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
    [CrossRef]
  2. R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
    [CrossRef]
  3. S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
    [CrossRef]
  4. T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
    [CrossRef]
  5. R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
    [CrossRef]
  6. N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
    [CrossRef]
  7. T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
    [CrossRef]
  8. Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
    [CrossRef]
  9. T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
    [CrossRef]
  10. H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
    [CrossRef]
  11. Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
    [CrossRef]
  12. T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993).
    [CrossRef] [PubMed]
  13. J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
    [CrossRef]
  14. B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
    [CrossRef]
  15. R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
    [CrossRef]
  16. I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
    [CrossRef]
  17. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
    [CrossRef] [PubMed]

2007 (4)

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
[CrossRef]

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
[CrossRef]

2005 (4)

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
[CrossRef] [PubMed]

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

1995 (1)

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

1994 (1)

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

1993 (1)

1992 (1)

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

1988 (2)

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

1985 (1)

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

1982 (1)

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

1981 (1)

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

Alferness, R. C.

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

Buhl, L. L.

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

Bull, J. D.

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

Cao, X.

Connors, J. M.

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Cui, X.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Dyes, W. A.

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Fujii, Y.

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
[CrossRef]

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Fujiwara, T.

T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993).
[CrossRef] [PubMed]

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Haas, B. M.

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

Hayashi, I.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Ikeda, A.

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
[CrossRef]

Kawazoe, T.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Kiuchi, K.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Kong, Y.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Li, C.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Lin, W. S.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Liu, F. K.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Matesanz, R.

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Ming,

Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
[CrossRef] [PubMed]

Mori, H.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Murphy, T. E.

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

Nagata, H.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Nicolas, J. D.

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

Ogiwara, J.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Otsuka, Y.

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
[CrossRef]

Ramaswamy, R. V.

Sanford, N. A.

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Sato, S.

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

Satoh, K.

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

Shimotsu, S.

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

Srivastava, R.

Suárez, I.

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Thaniyavarn, S.

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

Twu, R. C.

R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
[CrossRef]

Wang, H.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Wang, T. J.

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Yamaguchi, I.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yokota, M.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yoshino, T.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985).
[CrossRef]

R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982).
[CrossRef]

Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995).
[CrossRef]

Biosens. Bioelectron. (1)

T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007).
[CrossRef]

E (1)

Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007).
[CrossRef]

R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

IEEE Trans. Power Del. (1)

J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
[CrossRef]

J. Appl. Phys. (1)

H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994).
[CrossRef]

J. Lightwave Technol. (3)

T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992).
[CrossRef]

T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988).
[CrossRef]

N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988).
[CrossRef]

Opt. Lett. (1)

Optics Express (1)

Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005).
[CrossRef] [PubMed]

Sens. Actuators B-Chem. (1)

I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Device structures for (a) top view, (b) cross section view, and (c) surface photography of fabricated devices.

Fig. 2.
Fig. 2.

Near-field profiles for (a) the initial input TE mode, (b) the converted TM-polarized mode with TE-polarized input, (c) the initial input TM mode, and (d) the converted TE-polarized mode with TM-polarized input.

Fig. 3.
Fig. 3.

Conversion characteristics of input TM-polarized mode versus V C voltages under different phase-matching voltages V 1. (a) V 1 = 0 V, (b) V 1 = 8 V, (c) V 1 = 12 V, and (d) V 1 = 16 V.

Fig. 4.
Fig. 4.

Long-term stability measurements on the conversion performance at different measured times: (a) 20 min, (b) 40 min, (c) 50 min, and (d) 60 min.

Fig. 5.
Fig. 5.

A schematic explanation for the carrier-induced electric field due to the photorefractive effects: (a) V C > 0 and (b) V C < 0.

Fig. 6.
Fig. 6.

Optical power variations versus an illuminating time for the Zn-indiffused and the Ti-indiffused channel waveguides at a throughput power of 80 μW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P TM = 1 κ 2 κ 2 + δ 2 sin 2 ( κ 2 + δ 2 L )
P TE = κ 2 κ 2 + δ 2 sin 2 ( κ 2 + δ 2 L )
κ = ( π Γ 1 n o 3 r 61 λ G C ) ( V C V 1 2 )
δ = Δ β 2 + ( π Γ 2 n o 3 r 22 ( 2 G C + W C ) ) V 1

Metrics