Abstract

We present a fast full-view photoacoustic imaging system for visualizing tissue structures using a linear transducer array with combined scan. In this system, a 128-element linear transducer array was used to detect photoacoustic signals by combined scanning of electronic scan and mechanical scan. An improved limited-field filtered back projection algorithm with directivity factors was applied to reconstruct the optical absorption distribution. The experiments on phantoms and in vivo blood vessels in a rat brain were performed with this system. And a clear view of the curve boundaries of objects and the network of blood vessels of rat’s brain were acquired. The experimental results demonstrate the multielement photoacoustic imaging system has the ability of imaging complicated structures of objects.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J.Sel.Top.Quantum Electron. 5, 981–988 (1999).
    [CrossRef]
  2. A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
    [CrossRef]
  3. V. G . Andreev, A .A. Karabutov, and A .A . Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. control. 50, 1383–1390 (2003).
    [CrossRef] [PubMed]
  4. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
    [CrossRef] [PubMed]
  5. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
    [CrossRef] [PubMed]
  6. R. I. Siphanto, K. K. Thumma, T. G. Van Leewen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express 13,89–95 (2004).
    [CrossRef]
  7. E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
    [CrossRef]
  8. J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
    [CrossRef]
  9. E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
    [CrossRef]
  10. R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).
  11. H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
    [PubMed]
  12. Z. Zhao and R. Myllyla, “Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode,” Proc.SPIE 4256, 77–83 (2001).
    [CrossRef]
  13. M. Kinnunen and R. Myllyla, “Effect of glucose on photoacoustic signals at wavelengths of 1064 and 532 nm in pig blood and Intralipid,” J. Phys D: Appl. Phys. 38, 2654–2661 (2005).
    [CrossRef]
  14. L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
    [CrossRef]
  15. S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).
  16. R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
    [CrossRef]
  17. D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
    [CrossRef]
  18. D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
    [CrossRef]
  19. B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
    [CrossRef] [PubMed]
  20. Zh. X. Chen, Zh. L. Tang, and W. Wan, “Photoacoustic tomography imaging based on a 4f acoustic lens imaging system,” Opt. Express,  15, 4966–4976 (2007).
    [CrossRef] [PubMed]
  21. D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
    [CrossRef]
  22. Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
    [CrossRef] [PubMed]
  23. A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
    [CrossRef]
  24. M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging. 21, 814–822 (2002).
    [CrossRef] [PubMed]

2007 (3)

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Zh. X. Chen, Zh. L. Tang, and W. Wan, “Photoacoustic tomography imaging based on a 4f acoustic lens imaging system,” Opt. Express,  15, 4966–4976 (2007).
[CrossRef] [PubMed]

2006 (2)

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

2005 (3)

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

M. Kinnunen and R. Myllyla, “Effect of glucose on photoacoustic signals at wavelengths of 1064 and 532 nm in pig blood and Intralipid,” J. Phys D: Appl. Phys. 38, 2654–2661 (2005).
[CrossRef]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

2004 (3)

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef] [PubMed]

R. I. Siphanto, K. K. Thumma, T. G. Van Leewen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express 13,89–95 (2004).
[CrossRef]

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

2003 (3)

V. G . Andreev, A .A. Karabutov, and A .A . Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. control. 50, 1383–1390 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

2002 (3)

E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
[CrossRef]

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging. 21, 814–822 (2002).
[CrossRef] [PubMed]

2001 (2)

D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
[CrossRef]

Z. Zhao and R. Myllyla, “Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode,” Proc.SPIE 4256, 77–83 (2001).
[CrossRef]

2000 (1)

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

1999 (4)

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J.Sel.Top.Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Aguilar, G.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

Andreev, V. A.

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

Andreev, V. G .

V. G . Andreev, A .A. Karabutov, and A .A . Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. control. 50, 1383–1390 (2003).
[CrossRef] [PubMed]

Andreev, V. G.

A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Ashton, H. S.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Bell, B.

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

Bitton, R.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Chen, Q.

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Chen, W. R.

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

Chen, Zh. X.

Choi, B.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

Coniusteau, A.

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

de Mul, F. F. M.

Deyo, D. J.

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

Ermilov, S. A.

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

Esenaliev, R. O.

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J.Sel.Top.Quantum Electron. 5, 981–988 (1999).
[CrossRef]

Feng, D.

D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
[CrossRef]

Fleming, R. D.

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

Freeborn, S. S.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

Gatalica, Z.

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

Gu, H. M.

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

Gu, H.M

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

Hannigan, J.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Henrichs, P. M.

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

Johnigan, R.

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

Karabutov, A .A .

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

Karabutov, A .A.

V. G . Andreev, A .A. Karabutov, and A .A . Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. control. 50, 1383–1390 (2003).
[CrossRef] [PubMed]

Karabutov, A. A.

E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
[CrossRef]

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J.Sel.Top.Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Kinnunen, M.

M. Kinnunen and R. Myllyla, “Effect of glucose on photoacoustic signals at wavelengths of 1064 and 532 nm in pig blood and Intralipid,” J. Phys D: Appl. Phys. 38, 2654–2661 (2005).
[CrossRef]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
[CrossRef]

Lacewell, R.

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

Larin, K. V.

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

larina, I. V.

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

Li, M. L.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Lindberg, J.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Mackenzie, H. A

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Mehta, K.

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

Montamedi, M.

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

Motamedi, M.

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

Myllyla, R.

M. Kinnunen and R. Myllyla, “Effect of glucose on photoacoustic signals at wavelengths of 1064 and 532 nm in pig blood and Intralipid,” J. Phys D: Appl. Phys. 38, 2654–2661 (2005).
[CrossRef]

Z. Zhao and R. Myllyla, “Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode,” Proc.SPIE 4256, 77–83 (2001).
[CrossRef]

Nelson, J. S.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

Oraevsky, A .A .

V. G . Andreev, A .A. Karabutov, and A .A . Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. control. 50, 1383–1390 (2003).
[CrossRef] [PubMed]

Oraevsky, A. A

R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J.Sel.Top.Quantum Electron. 5, 981–988 (1999).
[CrossRef]

Oraevsky, A. A.

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
[CrossRef]

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Prough, D. S.

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

Rare, P.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Savateenva, E. V.

E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
[CrossRef]

Savateeva, E. V.

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

Shen, Y.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Shung, K. K.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Singh, H.

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

Siphanto, R. I.

Solomatin, S. V.

E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
[CrossRef]

Spiers, S.

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

Steenbergen, W.

Stoca, G.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Svaasand, L. O.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

Tan, Y.

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Tang, Zh. L.

Thumma, K. K.

van Adrichem, L. N. A.

Van Leewen, T. G.

van Neck, J. W.

Viator, J. A.

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

Wan, W.

Wang, L. V.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef] [PubMed]

M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging. 21, 814–822 (2002).
[CrossRef] [PubMed]

Wang, L.V.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
[CrossRef]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Wang, Y.

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

Xiang, L.Zh.

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Xing, D.

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Xu, M. H.

M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging. 21, 814–822 (2002).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef] [PubMed]

D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
[CrossRef]

Yang, D. W.

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

Yang, D.W.

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

Yang, S. H.

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

Yang, S.H.

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

Yin, B.Zh.

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Zemp, R. J.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

Zeng, L. M.

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

Zeng, Y. G.

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao and R. Myllyla, “Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode,” Proc.SPIE 4256, 77–83 (2001).
[CrossRef]

Appl. Opt. (1)

R. O. Esenaliev, I. V. larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 43, 3401 1–7 (2002).

Appl. Phys. Lett. (2)

D. W. Yang, D. Xing, H. M. Gu, Y. Tan, and L. M. Zeng, “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” Appl. Phys. Lett. 87, 194101 1–3 (2005).
[CrossRef]

D. W. Yang, D. Xing, Y. Tan, H. M. Gu, and S. H. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 174101 1–3 (2006).
[CrossRef]

Clin. Chem. (1)

H. A Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rare, “Advance in photoacoustic noninvasive glucose testing,” Clin. Chem. 45, 1587–1595 (1999).
[PubMed]

IEEE J.Sel.Top.Quantum Electron. (1)

R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J.Sel.Top.Quantum Electron. 5, 981–988 (1999).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436–440 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging. (1)

M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging. 21, 814–822 (2002).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. control. (1)

V. G . Andreev, A .A. Karabutov, and A .A . Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. control. 50, 1383–1390 (2003).
[CrossRef] [PubMed]

J. Biomed Opt. (1)

L.Zh. Xiang, D. Xing, H.M Gu, D.W. Yang, S.H. Yang, L. M. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed Opt. 12, 014001 1–8 (2007).
[CrossRef]

J. Biomed Opt. Lett. (1)

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoca, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed Opt. Lett. 12, 010501 1–3 (2007).
[CrossRef]

J. Phys D: Appl. Phys. (1)

M. Kinnunen and R. Myllyla, “Effect of glucose on photoacoustic signals at wavelengths of 1064 and 532 nm in pig blood and Intralipid,” J. Phys D: Appl. Phys. 38, 2654–2661 (2005).
[CrossRef]

Med. Phys. (2)

D. Feng, Y. Xu, G. Ku, and L.V. Wang, “Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture,” Med. Phys. 28, 2427–2431 (2001).
[CrossRef]

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724–733 (2004).
[CrossRef] [PubMed]

Nat.Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L.V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat.Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (1)

B.Zh. Yin, D. Xing, Y. Wang, Y. G. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on a 320-element linear transducer array,” Phys. Med. Biol. 49, 1339–1346 (2004).
[CrossRef] [PubMed]

Proc. SPIE (3)

A. A. oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional opto-acoustic tomography transducer array and image reconstruction algorithm,” Proc. SPIE 3601, 256–267 (1999).
[CrossRef]

J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. SPIE 4960,14–21 (2003).
[CrossRef]

E. V. Savateenva, A. A. Karabutov, S. V. Solomatin, and A. A. oraevsky, “Optical properties of blood at various level of oxygenation studied by time detection of laser-induced pressure profiles,” Proc. SPIE 4618, 63–75 (2002).
[CrossRef]

Proc. SPIE. (1)

S. A. Ermilov, A. Coniusteau, K. Mehta, R. Lacewell, P. M. Henrichs, and A. A. Oraevsky, “128-channel laser optoacoustic imaging system for breast cancer diagnostics,” Proc. SPIE. 6086, 608609 1–12 (2006).

Proc.SPIE (3)

E. V. Savateeva, A. A. Karabutov, B. Bell, R. Johnigan, M. Montamedi, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” Proc.SPIE 3597, 55–67 (2000).
[CrossRef]

Z. Zhao and R. Myllyla, “Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode,” Proc.SPIE 4256, 77–83 (2001).
[CrossRef]

A. A. Oraevsky, V. A. Andreev, A .A . Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev,“Laser optoacoustic imaging of breast: detection of cancer angiogenesis,” Proc.SPIE 3597, 352–363 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Directionality pattern of the ultrasound detection with a linear transducer array.

Fig. 2.
Fig. 2.

The experimental setup of the photoacoustic computed tomography system.

Fig. 3.
Fig. 3.

(a) Reconstructed image of the phantom with the LFBP algorithm. (b) Reconstructed image of the phantom with the improved LFBP algorithm. (c) The line normal to object axis profile of the reconstructed image shown in Fig. 3 (a) with y=30mm. (d) The line normal to object axis profile of the reconstructed image shown in Fig. 3 (b) with y=30mm.

Fig. 4.
Fig. 4.

(a) The schematic of measuring the slice width profile of the linear transducer array. (b) The amplitude slice-width profile of the linear transducer array to a point source placed at the position of 35mm in front of the linear transducer array.

Fig. 5.
Fig. 5.

Reconstructed image of the two elliptical absorbers embedded in phantom (inset: cross section of the phantom). (a) is the reconstructed photoacoustic image using the improved LFBP algorithm with the directivity pattern functions of individual transducer and the total transducer array. (b) is the reconstructed image using the improved LFBP algorithm with the directivity pattern function of individual transducer.

Fig. 6.
Fig. 6.

Reconstructed image of the network of simulated blood vessels (inset: cross section of the phantom).

Fig. 7.
Fig. 7.

Photoacoustic imaging of the rat brain in vivo. (a) Open-skull photograph of rat brain surface acquired after experiment. (b) Photoacoustic imaging of the superficial layer of a rat brain acquired with the skin and skull intact.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d ( θ ) = sin ( πa λ sin ( θ ) ) πa λ sin ( θ ) ,
D ( θ ) = sin ( πL λ sin ( θ ) ) sin ( πd λ sin ( θ ) ,
S f = m = 1 K n = 1 N d mn f D m f S mn ( t + τ mn f ) n = 1 N d mn f D m f .

Metrics