Abstract

By utilizing a vector network analyzer, the field distributions on the surface of a three-dimensional woodpile photonic crystal with a straight waveguide or a bend waveguide buried under the surface were measured in the microwave regime. The information of field profile and propagation characteristics of the guided modes can be successfully extracted from the surface near-field measurement. This work indicates that the near-field detection can become a promising means for experimental characterization of three-dimensional photonic crystal devices in supplement to the usual transmission spectrum measurement.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide coupler in three-dimensional photonic crystal

Rong-Juan Liu, Zhi-Yuan Li, Fei Zhou, and Dao-Zhong Zhang
Opt. Express 16(8) 5681-5688 (2008)

3+1 dimensional integrated optics with localized light in a photonic band gap

Alongkarn Chutinan and Sajeev John
Opt. Express 14(3) 1266-1279 (2006)

Band-dropping via coupled photonic crystal waveguides

Mehmet Bayindir and Ekmel Ozbay
Opt. Express 10(22) 1279-1284 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [Crossref] [PubMed]
  2. A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).
    [Crossref]
  3. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Jouannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
    [Crossref]
  4. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
    [Crossref] [PubMed]
  5. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
    [Crossref]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [Crossref] [PubMed]
  7. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
    [Crossref]
  8. P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, “Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes,” J. Lightwave Technol. 17, 2058–2062 (1999).
    [Crossref]
  9. J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
    [Crossref]
  10. F. de Fornel, Evanescent Waves (Springer-Verlag,Berlin, 2001).
  11. Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
    [Crossref]
  12. S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
    [Crossref]
  13. P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
    [Crossref]
  14. A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
    [Crossref]
  15. D. Gérard, L. Berguiga, F. de Fornel, L. Salomon, C. Seassal, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Near-field probing of active photonic-crystal structures,” Opt. Lett. 27, 173–175 (2002).
    [Crossref]
  16. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
    [Crossref]
  17. N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
    [Crossref] [PubMed]
  18. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
    [Crossref] [PubMed]
  19. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [Crossref] [PubMed]
  20. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
    [Crossref]
  21. N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. Fornel, “Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162 (2006)
    [Crossref] [PubMed]
  22. H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
    [Crossref]
  23. Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
    [Crossref]
  24. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
    [Crossref]
  25. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
    [Crossref] [PubMed]
  26. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
    [Crossref] [PubMed]
  27. A. Chutinan and S. Noda “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999)
    [Crossref]

2006 (4)

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. Fornel, “Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162 (2006)
[Crossref] [PubMed]

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

2005 (8)

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
[Crossref]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

2003 (1)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[Crossref]

E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Jouannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
[Crossref]

2000 (1)

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

1999 (6)

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, “Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes,” J. Lightwave Technol. 17, 2058–2062 (1999).
[Crossref]

A. Chutinan and S. Noda “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999)
[Crossref]

1998 (1)

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).
[Crossref]

1997 (1)

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Abashin, M.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Andreani, L. C.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Appelbaum, I.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]

Bajoni, D.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Belotti, M.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Berguiga, L.

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

Borel, P. I.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

Bryant, Garnett W.

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

Callard, S.

N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. Fornel, “Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162 (2006)
[Crossref] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

Campillo, A. L.

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[Crossref]

Cassagne, D.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Cheng, B. Y.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Chow, E.

Chutinan, A.

A. Chutinan and S. Noda “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999)
[Crossref]

D’Urso, B.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

de Fornel, F.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

D. Gérard, L. Berguiga, F. de Fornel, L. Salomon, C. Seassal, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Near-field probing of active photonic-crystal structures,” Opt. Lett. 27, 173–175 (2002).
[Crossref]

F. de Fornel, Evanescent Waves (Springer-Verlag,Berlin, 2001).

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

Fainman, Y.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Fan, S.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Feng, S

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Fornel, F.

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

Galli, M.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Gerace, D.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Gérard, D.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Goldner, Lori S.

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

Guizzetti, G.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Han, I.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Herzig, H. P.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Hsu, J. W. P.

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[Crossref]

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

Hulst, N. F. van

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

Hwang, J.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Jang, D.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Joannopoulos, J. D.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
[Crossref] [PubMed]

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Johnson, S. G.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
[Crossref] [PubMed]

E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Jouannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
[Crossref]

Jouanin, C.

Jouannopoulos, J. D.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Knight, J. C.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[Crossref]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Kristensen, M.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Leclercq, J. L.

Lee, R. K.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Lee, Y.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Letartre, X.

Levy, U.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Li, Z. Y.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Lidorikis, E.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
[Crossref] [PubMed]

Lin, S. Y.

Liu, R. J.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Liu, Y. Z.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Louvion, N.

N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. Fornel, “Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162 (2006)
[Crossref] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Ma, H. Q.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Mangan, B. J.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[Crossref]

Märki, I.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

McDaniel, Eric B.

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

Mekis, A.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Mouette, J.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

Murakowski, J. A.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Nakagawa, W.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Noda, S.

A. Chutinan and S. Noda “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999)
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Painter, O. J.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

Park, H.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Patrini, M.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Phillips, P. L.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[Crossref]

Pottier, P.

Povinelli, M. L.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
[Crossref] [PubMed]

Prather, D. W.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
[Crossref]

Rahmani, A.

N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. Fornel, “Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162 (2006)
[Crossref] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

Ren, C.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Rojo-Romeo, P.

Rosenberg, A.

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[Crossref]

Russell, P. St. J.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[Crossref]

Ryu, H.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Salomon, L.

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

Schneider, G. J.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Schuetz, C. A.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Seassal, C.

Shi, S.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Shirley, Eric L.

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

Song, D.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Song, H.

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

Tao, H. H.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Tortora, P.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Vaccaro, L.

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Viktorovitch, P.

Vileneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

Wendt, J. R.

White, C. A.

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[Crossref]

Wu, L. A.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Yariv, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Zhang, D. Z.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Zhang, Z. B.

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

Appl. Phys. Lett. (4)

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[Crossref]

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]

J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982 –2984 (2000).
[Crossref]

A. Chutinan and S. Noda “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999)
[Crossref]

J. Appl. Phys. (2)

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[Crossref]

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[Crossref]

J. Lightwave Technol. (1)

Opt. Exp. (3)

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Exp. 14, 1643–1657 (2006).
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, “Three-dimensional photonic crystal flat lens by full 3D negative refraction,” Opt. Exp. 13, 5592–5599 (2005)
[Crossref]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Exp. 13, 2007–2012 (2005)
[Crossref]

Opt. Lett. (3)

Phy. Rev. B (1)

Eric B. McDaniel, J. W. P. Hsu, Lori S. Goldner, Eric L. Shirley, and Garnett W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phy. Rev. B 55, 10878 –10882 (1997).
[Crossref]

Phys. Rev. B (2)

H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74, 205111 (2006)
[Crossref]

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).
[Crossref]

Phys. Rev. B. (1)

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, and M. Belotti, “Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance,” Phys. Rev. B. 72, 125322 (2005).
[Crossref]

Phys. Rev. Lett. (6)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003).
[Crossref] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005).
[Crossref] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006)
[Crossref] [PubMed]

Phys. Rev. Lett.. (1)

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett.. 95, 153901 (2005)
[Crossref] [PubMed]

Phys. Stat. Sol. (1)

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of photonic crystal Y-splitters,” Phys. Stat. Sol. (c)  2, 4087–4092 (2005).
[Crossref]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Other (1)

F. de Fornel, Evanescent Waves (Springer-Verlag,Berlin, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of (a) the woodpile 3D PC; (b) an x-type straight waveguide by removing a single rod in xy plane; (c) a bend waveguide as depicted by the red color in xy plane

Fig. 2.
Fig. 2.

The transmission spectrum of x-type straight waveguide (black line) and x-type bend waveguide (red line)

Fig. 3.
Fig. 3.

Calculated field patterns: (a) for the xz center-axis plane of the input waveguide without the structure contour of the photonic crystal; (b) for the xz center-axis plane of the input waveguide with the structure contour; (c) for the yz center-axis plane of the output waveguide without the structure contour; (d) for the yz center-axis plane of the output waveguide with the structure contour.

Fig. 4.
Fig. 4.

(a) Scanned field distribution of a straight waveguide at the frequency f=12.95 GHz with 7 layers covering above the waveguide layer. The dotted line represents the contour of the rods. (b) The simulated field distribution of waveguide at f=12.95 GHz with 7 layers above the waveguide layer. The field intensity is in unit of dB in (a) and (b).

Fig. 5.
Fig. 5.

Experimental and theoretical results of the near-field patterns at the surface plane with 7 covering layers and 8 covering layers at the frequencies correspond to Peak a, Peak b and Peak c in Fig. 2. The field intensity is in unit of dB in (a) ~ (l).

Metrics