Abstract

We develop a versatile integrated opto-fluidic ring resonator (OFRR) dye laser that can be operated regardless of the refractive index (RI) of the liquid. The OFRR is a micro-sized glass capillary with a wall thickness of a few micrometers. When the liquid in the core has an RI lower than that of the capillary wall (n=1.45), the capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. When the core RI is higher than that of the wall, the WGMs exist at the core/wall interface. In both cases, the WGMs can have extremely high Q-factor (>109), providing excellent optical feedback for low-threshold lasing. In this paper, we analyze the OFRR laser for various core RI’s and then we demonstrate the R6G laser when the dye is in ethanol (n=1.36), chloroform (n=1.445), and quinoline (n=1.626). The lasing threshold of 25 nJ/mm2 is achieved, two to three orders of magnitude lower than the previous work in microfluidic lasers. We further show that the laser emission can be efficiently out-coupled via an optical waveguide in touch with the OFRR for both high and low RI liquid core, allowing for easy guiding and delivery of the laser light.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
    [CrossRef]
  2. S. Balslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005).
    [CrossRef] [PubMed]
  3. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
    [CrossRef]
  4. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
    [CrossRef] [PubMed]
  5. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
    [CrossRef] [PubMed]
  6. Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006.
    [CrossRef]
  7. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
    [CrossRef] [PubMed]
  8. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  9. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
    [CrossRef]
  10. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984).
    [CrossRef] [PubMed]
  11. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, "Core-resonance capillary-fiber whispering-gallery-mode laser," Opt. Lett. 17, 1280-1282 (1992).
    [CrossRef] [PubMed]
  12. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
    [CrossRef] [PubMed]
  13. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
    [CrossRef]
  14. H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
    [CrossRef]
  15. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
    [CrossRef]
  16. S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
    [CrossRef]
  17. S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007).
    [CrossRef] [PubMed]
  18. I. M. White, J. Gohring, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," under review.
  19. I. Teraoka and S. Arnold, "Coupled whispering gallery modes in a multilayer-coated microsphere," Opt. Lett. 32, 1147-1149 (2007).
    [CrossRef] [PubMed]
  20. J. C. Knight, H. S. T. Driver, and G. N. Robertson, "Interference modulation of Q values in a cladded-fiber whispering-gallery-mode laser," Opt. Lett. 18, 1296 -1298 (1993).
    [CrossRef] [PubMed]
  21. H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
    [CrossRef]
  22. I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  23. J. Stone, "Measurements of the Absorption of Light in Low-Loss Liquids," J. Opt. Soc. Am. 62, 327-333 (1972).
    [CrossRef]
  24. H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).
  25. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  26. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
    [CrossRef]
  27. S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
    [CrossRef]
  28. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007).
    [CrossRef] [PubMed]

2007 (8)

M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, "Coupled whispering gallery modes in a multilayer-coated microsphere," Opt. Lett. 32, 1147-1149 (2007).
[CrossRef] [PubMed]

S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007).
[CrossRef] [PubMed]

2006 (5)

H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).

I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006.
[CrossRef]

2005 (3)

S. Balslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005).
[CrossRef] [PubMed]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

2004 (1)

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

2000 (2)

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

1998 (1)

1996 (1)

1993 (1)

1992 (1)

1984 (1)

1972 (1)

An, K.

S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

Arnold, S.

Balslev, S.

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Belotti, M.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Cabrera, H.

H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).

Castellanos, Y.

H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Chang, R. K.

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006.
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Cupps, J. M.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Driver, H. S. T.

Dulashko, Y.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Emery, T.

Fan, X.

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Galas, J. C.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Gersborg-Hansen, M.

Gorodetsky, M. L.

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Henderson, E. P.

Hutcheon, R. J.

Ilchenko, V. S.

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Kim, J. B.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

Kimble, H. J.

Knight, J. C.

Kou, Q.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006.
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Kristensen, A.

Lacey, S.

Lee, J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

Lee, J.-H.

S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Lee, S.-B.

S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Li, Z.

Long, M. B.

Mabuchi, H.

Marcano, A.

H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Moon, H.-J.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Oh, M.-K.

S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

Oveys, H.

Park, G.-W.

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

Psaltis, D.

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Robertson, G. N.

Savchenkov, A. A.

Scherer, A.

Shopova, S. I.

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Stone, J.

Streed, E. W.

Sumetsky, M.

Teraoka, I.

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Torres, J.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Tzeng, H.-M.

Vernooy, D. W.

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Wall, K. F.

White, I. M.

Whitesides, G. M.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

Windeler, R. S.

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006.
[CrossRef]

Yi, J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

Zhang, P.

Zhang, Z.

Zhu, H.

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Appl. Phys. Lett. (7)

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006.
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004).
[CrossRef]

S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000).
[CrossRef]

S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

Condens. Matter Phys. (1)

H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photon. (1)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Other (2)

I. M. White, J. Gohring, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," under review.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(A) Concept of OFRR dye lasers. (B) SEM image of the OFRR. OD = 75 μm.

Fig. 2.
Fig. 2.

WGM distribution for an OFRR with OD = 75 μm and wall thickness, t = 5 μm when the core RI (n1) is 1.36 (A), 1.445 (B), and 1.626 (C). The wall RI (n2) is 1.45 and the RI for the surrounding medium (n3) is 1.0. The WGM spectral position, λ, and the corresponding angular momentum, l, are labeled in the figure. All modes are polarized along the OFRR longitudinal direction. The fraction of light in the core (η1) and outside the resonator (η3) is: (A) η1 = 0.2%, η3 = 0.6%. (B) η1 = 0.9%, η3 = 0.6%. (C) η1 = 4.7%, η3 = 0.53%. Dashed lines indicate the OFRR inner and outer surface.

Fig. 3.
Fig. 3.

(A) Laser emission spectra of the 2 mM R6G in ethanol. (B) Peak intensity at 602.5 nm vs pump power density (triangle). The linear fit (solid line) shows the lasing threshold is approximately 25 nJ/mm2.

Fig. 4.
Fig. 4.

(A) Laser emission spectra for R6G in ethanol when the pump power is slightly above the threshold. R6G concentration for Curve 1–4 is: 2 mM, 1 mM, 0.01 mM, and 0.002 mM. Curves are vertically shifted for clarity. (B) γ value for various η1Qempty and R6G concentrations. Curve 1: η1Qempty = 4×106, ρ = 2 mM; Curve 2: η1Qempty = 4×106, ρ = 1 mM; Curve 3: η1Qempty = 4×106, ρ= 0.01 mM (or η1Qempty = 4×104, ρ= 1 mM); Curve 4: η1Qempty = 4×106, ρ = 0.002 mM; Curve 5: η1Qempty = 4×105, ρ = 0.002 mM; Curve 6: η1Qempty = 4×104, ρ = 0.002 mM;

Fig. 5.
Fig. 5.

Laser emission spectra at various excitation power levels for R6G in chloroform (A) and quinoline (B). (C) γ values for R6G in quinoline that is used in Eq. (3). R6G concentration: 2 mM.

Fig. 6.
Fig. 6.

Spectra of the laser emission coupled through the same optical fiber taper. R6G is in ethanol (A), chloroform (B), and quinoline (C). R6G concentration: 2 mM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ ( λ ) = σ a ( λ ) σ e ( λ ) [ 1 + Q dye ( λ ) η 1 Q empty ( λ ) ] ,
Q empty 1 = Q rad 1 + Q wall 1 + Q sca 1 + η 1 Q sol 1 ,
γ = σ a σ e [ 1 + α sol σ a ρ ] ,
ϕ = Q fiber 1 Q fiber 1 + Q empty 1 = ( 1 + Q fiber Q empty ) 1 ,

Metrics