Abstract

We provide a complete experimental characterization of stimulated Brillouin scattering in a 160 m long solid-core photonic crystal fiber, including threshold and spectrum measurements as well as position-resolved mapping of the Brillouin frequency shift. In particular, a three-fold increase of the Brillouin threshold power is observed, in excellent agreement with the spectrally-broadened Brillouin gain spectrum. Distributed measurements additionally reveal that the rise of the Brillouin threshold results from the broadband nature of the gain spectrum all along the fiber and is strongly influenced by strain. Our experiments confirm that these unique fibers can be exploited for the passive control or the suppression of Brillouin scattering.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Guided acoustic wave Brillouin scattering in photonic crystal fibers

Jean-Charles Beugnot, Thibaut Sylvestre, Hervé Maillotte, Gilles Mélin, and Vincent Laude
Opt. Lett. 32(1) 17-19 (2007)

Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core

Weiwen Zou, Zuyuan He, and Kazuo Hotate
Opt. Express 20(10) 11083-11090 (2012)

Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers

R. I. Woodward, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor
Opt. Lett. 39(8) 2330-2333 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [Crossref]
  2. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
    [Crossref]
  3. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Kelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141 (2006).
    [Crossref] [PubMed]
  4. J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
    [Crossref]
  5. D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
    [Crossref] [PubMed]
  6. P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
    [Crossref]
  7. K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
    [Crossref]
  8. J. Toulouse, R. Pattnaik, and J. McElhenny, “Stimulated Brillouin Scattering in Small Core Photonic Crystal Fibers (PCF),” in Conf. on Lasers & Electro-Optics (Optical Society of America, Baltimore, 2007) paper CThH7.
  9. V.I. Kovalev and R.G. Harisson, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002).
    [Crossref]
  10. M. Gonzalez-Herraez and L. Thevenaz, “Simultaneous position-resolved mapping of chromatic dispersion and Brillouin shift along single-mode optical fibres,” Opt. Lett. 4, 1128–1130 (2004).
  11. R. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett. 22, 1011–1012 (1986).
    [Crossref]
  12. P. Bayvel and P. M. Radmore “Solutions of the SBS equations in single mode optical fibers and implications for fiber transmission systems,” Electron. Lett. 26, 434–435 (1990).
    [Crossref]
  13. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [Crossref] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3th Ed (Academic Press, Boston, 2001).
  15. M. O. van Devender and A.J. Boot, “Polarization properties of Stimulated Brillouin Scattering in Single Mode Fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [Crossref]
  16. W. Zhang, Y. Wang, Y. Pi, Y. Huang, and J. Peng, “Influence of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber,” Opt. Lett. 32, 2303–2305 (2007).
    [Crossref] [PubMed]

2007 (2)

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

W. Zhang, Y. Wang, Y. Pi, Y. Huang, and J. Peng, “Influence of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber,” Opt. Lett. 32, 2303–2305 (2007).
[Crossref] [PubMed]

2006 (4)

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Kelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141 (2006).
[Crossref] [PubMed]

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

2005 (2)

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

2004 (1)

M. Gonzalez-Herraez and L. Thevenaz, “Simultaneous position-resolved mapping of chromatic dispersion and Brillouin shift along single-mode optical fibres,” Opt. Lett. 4, 1128–1130 (2004).

2002 (1)

1994 (1)

M. O. van Devender and A.J. Boot, “Polarization properties of Stimulated Brillouin Scattering in Single Mode Fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[Crossref]

1990 (1)

P. Bayvel and P. M. Radmore “Solutions of the SBS equations in single mode optical fibers and implications for fiber transmission systems,” Electron. Lett. 26, 434–435 (1990).
[Crossref]

1986 (1)

R. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett. 22, 1011–1012 (1986).
[Crossref]

1972 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3th Ed (Academic Press, Boston, 2001).

Andersen, U. L.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Bayvel, P.

P. Bayvel and P. M. Radmore “Solutions of the SBS equations in single mode optical fibers and implications for fiber transmission systems,” Electron. Lett. 26, 434–435 (1990).
[Crossref]

Benchabane, S.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Beugnot, J.C.

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

Boot, A.J.

M. O. van Devender and A.J. Boot, “Polarization properties of Stimulated Brillouin Scattering in Single Mode Fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[Crossref]

Broderick, N.G.R.

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

Chraplyvy, A. R.

R. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett. 22, 1011–1012 (1986).
[Crossref]

Dainese, P.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Kelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141 (2006).
[Crossref] [PubMed]

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Derosier, R. M.

R. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett. 22, 1011–1012 (1986).
[Crossref]

Dudley, J. M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Elser, D.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Fragnito, H. L.

Fragnito, H.L.

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Furusawa, K.

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

Glckl, O.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Gonzalez-Herraez, M.

M. Gonzalez-Herraez and L. Thevenaz, “Simultaneous position-resolved mapping of chromatic dispersion and Brillouin shift along single-mode optical fibres,” Opt. Lett. 4, 1128–1130 (2004).

Harisson, R.G.

Huang, Y.

Joly, N.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Kelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141 (2006).
[Crossref] [PubMed]

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Kelif, A.

Khelif, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Kibler, B.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Knight, J.C.

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Korn, A.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Kovalev, V.I.

Laude, V.

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Kelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141 (2006).
[Crossref] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Leuchs, G.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Lorenz, S.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Maillotte, H.

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Marquardt, Ch.

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

McElhenny, J.

J. Toulouse, R. Pattnaik, and J. McElhenny, “Stimulated Brillouin Scattering in Small Core Photonic Crystal Fibers (PCF),” in Conf. on Lasers & Electro-Optics (Optical Society of America, Baltimore, 2007) paper CThH7.

Mélin, G.

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

Monro, T.M.

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

Mussot, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Pattnaik, R.

J. Toulouse, R. Pattnaik, and J. McElhenny, “Stimulated Brillouin Scattering in Small Core Photonic Crystal Fibers (PCF),” in Conf. on Lasers & Electro-Optics (Optical Society of America, Baltimore, 2007) paper CThH7.

Peng, J.

Pi, Y.

Poletti, F.

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

Radmore, P. M.

P. Bayvel and P. M. Radmore “Solutions of the SBS equations in single mode optical fibers and implications for fiber transmission systems,” Electron. Lett. 26, 434–435 (1990).
[Crossref]

Richardson, D.J.

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

Russell, P. St. J

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Russell, P. St. J.

Smith, R. G.

Sylvestre, T.

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Thevenaz, L.

M. Gonzalez-Herraez and L. Thevenaz, “Simultaneous position-resolved mapping of chromatic dispersion and Brillouin shift along single-mode optical fibres,” Opt. Lett. 4, 1128–1130 (2004).

Tkach, R.

R. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett. 22, 1011–1012 (1986).
[Crossref]

Toulouse, J.

J. Toulouse, R. Pattnaik, and J. McElhenny, “Stimulated Brillouin Scattering in Small Core Photonic Crystal Fibers (PCF),” in Conf. on Lasers & Electro-Optics (Optical Society of America, Baltimore, 2007) paper CThH7.

van Devender, M. O.

M. O. van Devender and A.J. Boot, “Polarization properties of Stimulated Brillouin Scattering in Single Mode Fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[Crossref]

Wang, Y.

Wiederhecker, G. S.

Wiederhecker, G.S.

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Wilm, M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Yusoff, Z.

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

Zhang, W.

Appl. Opt. (1)

Electron. Lett. (2)

R. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett. 22, 1011–1012 (1986).
[Crossref]

P. Bayvel and P. M. Radmore “Solutions of the SBS equations in single mode optical fibers and implications for fiber transmission systems,” Electron. Lett. 26, 434–435 (1990).
[Crossref]

J. Lightwave Technol. (2)

M. O. van Devender and A.J. Boot, “Polarization properties of Stimulated Brillouin Scattering in Single Mode Fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[Crossref]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

Nature Physics (1)

P. Dainese, P. St. J Russell, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nature Physics 2, 388–392 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

J.C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonics crystal fibers,” Opt. Lett. 2, 17–19 (2007).
[Crossref]

K. Furusawa, Z. Yusoff, F. Poletti, T.M. Monro, N.G.R. Broderick, and D.J. Richardson, “Brillouin characterization of holey optical fibres,” Opt. Lett. 17, 2541–2543 (2006).
[Crossref]

V.I. Kovalev and R.G. Harisson, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002).
[Crossref]

M. Gonzalez-Herraez and L. Thevenaz, “Simultaneous position-resolved mapping of chromatic dispersion and Brillouin shift along single-mode optical fibres,” Opt. Lett. 4, 1128–1130 (2004).

W. Zhang, Y. Wang, Y. Pi, Y. Huang, and J. Peng, “Influence of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber,” Opt. Lett. 32, 2303–2305 (2007).
[Crossref] [PubMed]

Phys. Rev. B (1)

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[Crossref]

Phys. Rev. Lett. (1)

D. Elser, U. L. Andersen, A. Korn, O. Glckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonics crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[Crossref] [PubMed]

Other (2)

J. Toulouse, R. Pattnaik, and J. McElhenny, “Stimulated Brillouin Scattering in Small Core Photonic Crystal Fibers (PCF),” in Conf. on Lasers & Electro-Optics (Optical Society of America, Baltimore, 2007) paper CThH7.

G. P. Agrawal, Nonlinear Fiber Optics, 3th Ed (Academic Press, Boston, 2001).

Supplementary Material (1)

» Media 1: MOV (2293 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for measuring Brillouin threshold and the gain spectra.

Fig. 2.
Fig. 2.

(a) Measured transmitted and backscattered powers as a function of the input pump power. Inset, SEM image of PCF cross section. (b) Brillouin spectrum linewidth as a function of injected pump power. Inset, Brillouin spectrum below threshold (-15dB) using a heterodyne detection with 300 kHz of resolution, FWHM = 80MHz.

Fig. 3.
Fig. 3.

Experimental setup for distributed SBS measurement in PCF. Bottom left : principle of operation of BOTDA technique.

Fig. 4.
Fig. 4.

(a) SBS gain width (FWHM, crosses) and frequency shift (solid line) versus distance with a spatial resolution of 2m. (b) fiber spool, (c) gain spectrum evolution.

Fig. 5.
Fig. 5.

(a) SBS gain width (FWHM, crosses) and frequency shift (solid line) versus distance with a spatial resolution of 10m. (b) evolution of SBS gain spectrum along the fiber.

Fig. 6.
Fig. 6.

Brillouin spectrum at different position along the fiber for a 100ns pulse. The entire sequence can be viewed as a movie attached to the manuscript (avi, 2290 kb). [Media 1]

Metrics