Abstract

The dual-beam laser trap is a versatile tool with many possible applications. In order to characterize its thermal properties in a microfluidic trap geometry we have developed a non-intrusive fluorescence ratio technique using the temperature sensitive dye Rhodamine B and the temperature independent reference dye Rhodamine 110. We measured temperature distribution profiles in the trap with submicron spatial resolution on a confocal laser-scanning microscope. The maximum heating in the center of the trap amounts to (13 ± 2) °C/W for a wavelength of λ = 1064 nm and scales linearly with the applied power. The measurements correspond well with simulated temperature distributions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. P. Gordon, "Cooling and Trapping of Atoms by Resonance Radiation Pressure," Opt. Lett. 4, 161-163 (1979).
    [CrossRef] [PubMed]
  2. A. Ashkin, "Applications of Laser-Radiation Pressure," Science 210, 1081-1088 (1980).
    [CrossRef] [PubMed]
  3. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
    [CrossRef] [PubMed]
  4. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
    [CrossRef] [PubMed]
  5. R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000).
    [CrossRef] [PubMed]
  6. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
    [CrossRef] [PubMed]
  7. J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).
  8. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
    [CrossRef] [PubMed]
  9. W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
    [CrossRef] [PubMed]
  10. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  11. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  12. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  13. K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
    [CrossRef] [PubMed]
  14. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a Fiberoptic Light-Force Trap," Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  15. M. T. Wei, K. T. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006).
    [CrossRef] [PubMed]
  16. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
    [CrossRef] [PubMed]
  17. B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, " High throughput rheological measurements with an optical stretcher," in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang, D. E. Discher eds. (Elsevier, New York, 2007).
    [CrossRef]
  18. F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
    [CrossRef]
  19. S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monollithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
    [CrossRef] [PubMed]
  20. H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
    [CrossRef] [PubMed]
  21. P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Rev. Drug Discovery 5, 210-218 (2006).
    [CrossRef]
  22. T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
    [CrossRef]
  23. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
    [CrossRef] [PubMed]
  24. J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Exp. Fluids 26, 7-15 (1999).
    [CrossRef]
  25. A. N. Tkhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, 1990).
  26. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics 1 (Springer Verlag, 1991).
    [CrossRef]
  27. R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
    [CrossRef] [PubMed]
  28. S. Duhr and D. Braun, "Thermophoretic depletion follows Boltzmann distribution," Phys. Rev. Lett. 96, 168301 (2006).
    [CrossRef] [PubMed]
  29. K. T. Yang, "Natural Convection in Enclosures", in Handbook of Single Phase Convective Heat Transfer, S. Kakac, R. K. Shah, and W. Aung, eds. (Wiley-Interscience, 1987),
  30. D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103 (2002).
    [CrossRef] [PubMed]
  31. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
    [CrossRef] [PubMed]
  32. A. Schönle and S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998).
    [CrossRef]

2006 (8)

M. T. Wei, K. T. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006).
[CrossRef] [PubMed]

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
[CrossRef] [PubMed]

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monollithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
[CrossRef] [PubMed]

P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Rev. Drug Discovery 5, 210-218 (2006).
[CrossRef]

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

S. Duhr and D. Braun, "Thermophoretic depletion follows Boltzmann distribution," Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

2003 (2)

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

2001 (3)

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

2000 (1)

R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000).
[CrossRef] [PubMed]

1999 (3)

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Exp. Fluids 26, 7-15 (1999).
[CrossRef]

1998 (1)

1994 (1)

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

1993 (2)

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a Fiberoptic Light-Force Trap," Opt. Lett. 18, 1867-1869 (1993).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
[CrossRef] [PubMed]

1991 (1)

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

1986 (1)

1980 (1)

A. Ashkin, "Applications of Laser-Radiation Pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

1979 (1)

1970 (1)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Adrian, R. J.

J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Exp. Fluids 26, 7-15 (1999).
[CrossRef]

Aguirresacona, I. U.

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Arbeloa, F. L.

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

Arbeloa, I. L.

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

Arbeloa, T. L.

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

Ashkin, A.

Benninger, R. K. P.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Bernet, S.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
[CrossRef] [PubMed]

Bourdieu, L.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Braun, D.

S. Duhr and D. Braun, "Thermophoretic depletion follows Boltzmann distribution," Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

Chatenay, D.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Chiou, A.

Chu, S.

Constable, A.

Craighead, H.

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
[CrossRef] [PubMed]

Cran-McGreehin, S.

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monollithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

deMello, A. J.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Dholakia, K.

Dietl, P.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

Dietrich, C.

R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000).
[CrossRef] [PubMed]

Diez, S.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Dimova, R.

R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000).
[CrossRef] [PubMed]

Dittrich, P. S.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Rev. Drug Discovery 5, 210-218 (2006).
[CrossRef]

Duhr, S.

S. Duhr and D. Braun, "Thermophoretic depletion follows Boltzmann distribution," Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

Duschl, C.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Dziedzic, J. M.

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Estevez, M. J. T.

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

French, P. M. W.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Frick, M.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

Garcés-Chávez, V.

Gast, F. U.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Geggier, P.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Gordon, J. P.

Gratzer, W.

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

Guck, J.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Haller, T.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

Harlepp, S.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Helfer, E.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Hell, S. W.

Herrington, C. S.

Hofmann, O.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Howitz, S.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Jager, M. S.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Jess, P. R. T.

Karmenyan, A.

Käs, J.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Kim, J.

Koc, Y.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Krauss, T. F.

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monollithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Libchaber, A.

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

Lincoln, B.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

MacKintosh, F. C.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Manz, A.

P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Rev. Drug Discovery 5, 210-218 (2006).
[CrossRef]

Mazilu, M.

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Mertig, M.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Mervis, J.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

Neil, M. A. A.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Opitz, J.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Parker, K.

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

Paterson, L.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Pouligny, B.

R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000).
[CrossRef] [PubMed]

Prentiss, M.

Queitsch, U.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Requejo-Isidro, J.

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Riches, A.

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Ritsch-Marte, M.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

Robert, J.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

Sakakibara, J.

J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Exp. Fluids 26, 7-15 (1999).
[CrossRef]

Salchert, K.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Schinkinger, S.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
[CrossRef] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
[CrossRef] [PubMed]

Schönle, A.

Schwille, P.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Sibbett, W.

Simmons, R.

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Singer, W.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

Sleep, J.

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

Smith, D.

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Smolinski, J.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
[CrossRef] [PubMed]

Uhlig, K.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Wei, M. T.

Weigel, M.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Werner, C.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Wilson, D.

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

Winlove, C. P.

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

Wottawah, F.

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Yang, K. T.

Zarinetchi, F.

Anal. Chem. (2)

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Biophys. J. (6)

R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000).
[CrossRef] [PubMed]

J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003).
[CrossRef] [PubMed]

Exp. Fluids (1)

J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Exp. Fluids 26, 7-15 (1999).
[CrossRef]

J. Lumin. (1)

T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991).
[CrossRef]

Lab Chip (1)

S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monollithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Nanofluid. (1)

F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006).
[CrossRef]

Nature (2)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993).
[CrossRef] [PubMed]

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
[CrossRef] [PubMed]

Nature Rev. Drug Discovery (1)

P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Rev. Drug Discovery 5, 210-218 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (4)

D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

S. Duhr and D. Braun, "Thermophoretic depletion follows Boltzmann distribution," Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001).
[CrossRef] [PubMed]

Science (2)

A. Ashkin, "Applications of Laser-Radiation Pressure," Science 210, 1081-1088 (1980).
[CrossRef] [PubMed]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Other (4)

B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, " High throughput rheological measurements with an optical stretcher," in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang, D. E. Discher eds. (Elsevier, New York, 2007).
[CrossRef]

K. T. Yang, "Natural Convection in Enclosures", in Handbook of Single Phase Convective Heat Transfer, S. Kakac, R. K. Shah, and W. Aung, eds. (Wiley-Interscience, 1987),

A. N. Tkhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, 1990).

C. A. J. Fletcher, Computational Techniques for Fluid Dynamics 1 (Springer Verlag, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Microfluidic setup of the dual-beam laser trap. The two opposing laser beams diverge from the fiber cores in the optical fibers through the index matching gel into the glass capillary where they form an optical trap. The fluorescence of the aqueous dye solution within the capillary is imaged from below within the marked area.

Fig. 2.
Fig. 2.

Calibration function; the fluorescence ratio of Rhodamine B and Rhodamine 110 as a function of temperature. The error bars are the standard error of mean (SEM; N = 5).

Fig. 3.
Fig. 3.

(a) Color-coded temperature distribution in the imaging plane through the center of the trap within the capillary. The ratio of the fluorescence profiles was measured and scaled with the calibration function shown in Fig. 2. The power in each of the two laser beams was 1 W and the wavelength was 1064 nm. (b) Line profile of the temperature distribution along the microfluidic channel indicated by the dashed line in (a). The slight asymmetry is caused by residual flow. For comparison with Fig. 4, please note that the temperature values shown are room temperature (21 °C) plus the temperature increase caused by the laser heating.

Fig. 4.
Fig. 4.

Theoretical simulation of the distribution of the temperature increase in and around the capillary. The position of the two laser beams (1064 nm; 1 W each) is indicated by the white dashed lines, the position of the capillary by the black squares. Please note that the color scale differs between Fig. 3 and Fig. 4.

Fig. 5.
Fig. 5.

Dependence of the maximum temperature reached in the center of the trap on total incident laser power (1 W = 0.5 W in each beam). Shown are measurements (N = 4) with SEM and the 95% confidence interval.

Fig. 6.
Fig. 6.

Temporal development of the heating process. The lasers are turned on at t = 2 s (indicated by the dashed line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 T = 1 k S + c P ρ k T t ,
2 T = 1 k S ,

Metrics