Abstract

The inclusion of a linear chirped fiber Bragg grating for short pulse dispersion is shown to enhance the time domain realization of optical frequency-domain reflectometry. A low resolution demonstrator is constructed with single surface scans containing 140 resolvable spots. The system dynamic range meets that shown in earlier demonstrations without digital post-processing for signal linearization. Using a conjugate pair of chirped pulses created by the fiber grating, ranging is performed with position and velocity information decoupled. Additionally, by probing the target with short pulses and introducing grating dispersion just before photodetection, velocity immune ranging is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3,971-977 (1985).
    [CrossRef]
  2. E. Arons, E. N. Leith, A-C Tien, and R. Wagner, "High-resolution optical chirped pulse gating," Appl. Opt. 36, 2603-2608 (1997).
    [CrossRef] [PubMed]
  3. B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
    [CrossRef]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  6. S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14,11575-11584 (2006).
    [CrossRef] [PubMed]
  7. Y. Park, T-J Ahn, J-C Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4598-4617 (2007).
    [CrossRef]
  8. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).
  9. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
    [CrossRef]
  10. M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988).
    [CrossRef]
  11. A. M. Weiner and J. P. Heritage, U.S. Patent No. 4,928,316, "Optical systems and methods based upon temporal stretching, modulation, and recompression of ultrashort pulses.
  12. R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, "Time-domain waveform processing using chromatic dispersion for temporal shaping of optical pulses," J. Opt. Soc. Am. B 22, 2427-2436 (2005).
    [CrossRef]
  13. R. E. Saperstein, D. Panasenko, and Y. Fainman, "Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber," Opt. Lett. 29, 501-503 (2004).
    [CrossRef] [PubMed]
  14. R. E. Saperstein and Y. Fainman, "Information processing with longitudinal spectral decomposition of ultrafast pulses," Appl. Opt. doc. ID 82277 (posted 14 August 2007, in press)
  15. J. Azaña, N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, "Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers," Opt. Lett. 29, 2849-2851 (2004).
    [CrossRef]
  16. J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006).
    [CrossRef]
  17. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
    [CrossRef]
  18. B. H. Kolner, "Space-time duality and the theory of temporal imaging," J. Quantum Electron 30, 1951-1963 (1994).
    [CrossRef]
  19. X. Wang and N. Wada, "Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application," Opt. Express 15, 7319-7326 (2007).
    [CrossRef] [PubMed]
  20. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  21. J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson and S. Radic, "12.47ns Continuously-Tunable Two-Pump Parametric Delay," European Conference on Optical Communication 2006 Postdeadline Th4.4.3. (2006).
  22. C. V. Bennett and B. H. Kolner, "Aberrations in Temporal Imaging," IEEE J. Quant. Electron. 37, 20-32 (2001).
    [CrossRef]
  23. J. R. Birge, R. Ell and F. X. Kärtner, "Two-dimensional spectral shearing interferometry for few-cycle pulse characterization," Opt. Lett. 31, 2063-2065 (2006).
    [CrossRef] [PubMed]
  24. Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
    [CrossRef]
  25. M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett. 24,1-3 (1999).
    [CrossRef]
  26. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  27. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
    [CrossRef] [PubMed]
  28. M. Sumetsky, B. Eggleton, and C. de Sterke, "Theory of group delay ripple generated by chirped fiber gratings," Opt. Express 10, 332-340 (2002).
    [PubMed]
  29. S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, "Mode partition noise measurement of time stretched ultralow noise actively modelocked semiconductor based laser," Proceedings of the 2007 IEEE LEOS Annual Meeting Paper ThD3, (IEEE, Piscataway, NJ, 2007).
  30. C. Dorrer, N. Belabas, J-P Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  31. A. W. Rihaczek, Principles of High-Resolution Radar (McGraw-Hill, Inc., 1969).
  32. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
    [CrossRef] [PubMed]
  33. Y. C. Fung, Biomechanics: Circulation, 2 ed. (Springer-Verlag, 1997).
  34. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography," Opt. Lett. 24, 1584-1586 (1999).
    [CrossRef]
  35. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-422 (2007).
    [CrossRef] [PubMed]
  36. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2003

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

2002

2001

C. V. Bennett and B. H. Kolner, "Aberrations in Temporal Imaging," IEEE J. Quant. Electron. 37, 20-32 (2001).
[CrossRef]

2000

1999

1997

E. Arons, E. N. Leith, A-C Tien, and R. Wagner, "High-resolution optical chirped pulse gating," Appl. Opt. 36, 2603-2608 (1997).
[CrossRef] [PubMed]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

1994

B. H. Kolner, "Space-time duality and the theory of temporal imaging," J. Quantum Electron 30, 1951-1963 (1994).
[CrossRef]

1988

M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988).
[CrossRef]

1985

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3,971-977 (1985).
[CrossRef]

1984

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

1960

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).

Abou-Auf, A.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Ahn, T-J

Y. Park, T-J Ahn, J-C Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4598-4617 (2007).
[CrossRef]

Akiba, M.

Albersheim, W. J.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).

Aliberti, K.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Alic, N.

Arons, E.

Ausherman, D. A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

Azaña, J.

Bachmann, A. H.

Belabas, N.

Bennett, C. V.

C. V. Bennett and B. H. Kolner, "Aberrations in Temporal Imaging," IEEE J. Quant. Electron. 37, 20-32 (2001).
[CrossRef]

Berger, N. K.

Birge, J. R.

Blatter, C.

Bouma, B.

Carballar, A.

Chan, K. -P.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Chong, C.

Chou, J.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Culshaw, B.

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3,971-977 (1985).
[CrossRef]

Dammann, J.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Dang, G.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Darlington, S.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).

de Boer, J.

de Sterke, C.

Dorrer, C.

Duker, J.

Eggleton, B.

Ell, R.

Fainman, Y.

Fischer, B.

Fujimoto, J.

Fujimoto, J. G.

R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Gaeta, A.

Giza, M.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Haner, M.

M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988).
[CrossRef]

Hsu, K.

R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Huber, R.

R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Iftimia, N.

Itoh, M.

Izatt, J. A.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Joffre, M.

Jones, H. M.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

Kärtner, F. X.

Kieffer, J-C

Y. Park, T-J Ahn, J-C Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4598-4617 (2007).
[CrossRef]

Kim, D. Y.

Klauder, J. R.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).

Ko, T.

Kolner, B. H.

C. V. Bennett and B. H. Kolner, "Aberrations in Temporal Imaging," IEEE J. Quant. Electron. 37, 20-32 (2001).
[CrossRef]

B. H. Kolner, "Space-time duality and the theory of temporal imaging," J. Quantum Electron 30, 1951-1963 (1994).
[CrossRef]

Kowalczyk, A.

Kozma, A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

Kulkarni, M. D.

Lasser, T.

Leitgeb, R. A.

Leith, E. N.

Levit, B.

Likforman, J-P

Lin, I.-S.

J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006).
[CrossRef]

Madjarova, V. D.

Makita, S.

McKinney, J. D.

J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006).
[CrossRef]

Moon, S.

Morosawa, A.

Muriel, M. A.

Okawachi, Y.

Ovrebo, G.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Panasenko, D.

Park, Y.

Y. Park, T-J Ahn, J-C Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4598-4617 (2007).
[CrossRef]

Poggio, E. C.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

Price, A. C.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).

Redman, B.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Rokitski, R.

Rollins, A. M.

Ruff, W.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Sakai, T.

Saperstein, R. E.

Sharping, J.

Simon, D.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Smulakovsky, V.

Srinivasan, V.

Stann, B. L.

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Sumetsky, M.

Tearney, G.

Tiara, K.

R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Tien, A-C

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Uttam, D.

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3,971-977 (1985).
[CrossRef]

van Howe, J.

van Leeuwen, T. G.

Villiger, M. L.

Wada, N.

Wagner, R.

Walker, J. L.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

Wang, X.

Wang, Y.

Warren, W. S.

M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988).
[CrossRef]

Weiner, A. M.

J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006).
[CrossRef]

Willner, A.

Wojtkowski, M.

R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Xu, C.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yun, S.

Yun, S. H.

Appl. Opt.

Appl. Phys. Lett.

M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988).
[CrossRef]

Bell Syst. Tech. J.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).

Electron. Lett.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

IEEE J. Quant. Electron.

C. V. Bennett and B. H. Kolner, "Aberrations in Temporal Imaging," IEEE J. Quant. Electron. 37, 20-32 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006).
[CrossRef]

J. Lightwave Technol.

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3,971-977 (1985).
[CrossRef]

J. Opt. Soc. Am. B

J. Quantum Electron

B. H. Kolner, "Space-time duality and the theory of temporal imaging," J. Quantum Electron 30, 1951-1963 (1994).
[CrossRef]

Opt. Express

Y. Park, T-J Ahn, J-C Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4598-4617 (2007).
[CrossRef]

M. Sumetsky, B. Eggleton, and C. de Sterke, "Theory of group delay ripple generated by chirped fiber gratings," Opt. Express 10, 332-340 (2002).
[PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14,11575-11584 (2006).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-422 (2007).
[CrossRef] [PubMed]

X. Wang and N. Wada, "Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application," Opt. Express 15, 7319-7326 (2007).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Opt. Express.

R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003).
[CrossRef]

Other

R. E. Saperstein and Y. Fainman, "Information processing with longitudinal spectral decomposition of ultrafast pulses," Appl. Opt. doc. ID 82277 (posted 14 August 2007, in press)

A. M. Weiner and J. P. Heritage, U.S. Patent No. 4,928,316, "Optical systems and methods based upon temporal stretching, modulation, and recompression of ultrashort pulses.

J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson and S. Radic, "12.47ns Continuously-Tunable Two-Pump Parametric Delay," European Conference on Optical Communication 2006 Postdeadline Th4.4.3. (2006).

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, "Mode partition noise measurement of time stretched ultralow noise actively modelocked semiconductor based laser," Proceedings of the 2007 IEEE LEOS Annual Meeting Paper ThD3, (IEEE, Piscataway, NJ, 2007).

A. W. Rihaczek, Principles of High-Resolution Radar (McGraw-Hill, Inc., 1969).

Y. C. Fung, Biomechanics: Circulation, 2 ed. (Springer-Verlag, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Time-frequency visualizations of chirped pulse pairs. The plot on the left represents the favorable case of precise linear chirp generated by an ideal dispersion source such as the linear CFBG. The plot on the right illustrates the degrading effects of higher order dispersion. The lower portion of the Fig. gives a representative interference signal for each case.

Fig. 2.
Fig. 2.

Schematic of experimental setup. PD is the amplified photodiode, OSA is the optical spectrum analyzer, and PC is a personal computer. The inset shows sampling scope data captured for a single point reflection.

Fig. 3.
Fig. 3.

Representative waveform from a single point reflection transferred to the range domain by an FFT operation. (a) Linear amplitude plot shows point spread function. Red line is the raw collected data, while the blue line is normalized by the background and reshaped using a Hamming window. (b) Log plot of power spectral density for point spread function. The blue line represents the reshaped data signal while the magenta and green lines show noise equivalent responses from the amplified photodiode using Hamming and Blackman reshaping windows, respectively. The inset shows that at larger ranges background can be reduced through a 4x averaging (dark yellow) as compared to non averaged (blue).

Fig. 4.
Fig. 4.

Relative height measurements over gold-coated staircase surfaces. The green traces are the time domain realization of OFDR while the black traces are captured using conventional OFDR. (a) Two overlaid scans from the same surface composed of ~150 micron cover glass plates. The reference arm is moved to emphasize single point precision over various ranges. (b) A single scan covering seven 1 mm slide glass steps. The insets show that the measurement precision remains under 25 microns over the entire range.

Fig. 5.
Fig. 5.

Time-frequency visualizations of chirped reference and target pulses. The target pulse (dashed) is delayed with respect to the reference (red solid) and upshifted via Doppler (blue). (a) Doppler upshift lead to a larger observable beat frequency and apparent target range. (b) a two pulse sequence with opposite chirp signs generates two distinct observable ranges.

Fig. 6.
Fig. 6.

Schematic of Doppler-range decoupling demonstrator. A switch controls the side of the CFBG off which the short pulse disperses. A fiber Mach-Zehnder interferometer introduces a controllable delay between chirped pulses while Doppler shifting one by + 152 MHz. Polarization controllers (PC) align the signals before coupling. 90% of the signal goes to a PD for time domain OFDR while the remainder goes to an OSA for conventional OFDR.

Fig. 7.
Fig. 7.

Detected waveforms captured from a single reflection point at close range. Blue lines, (a) and (c), are obtained with pulses dispersed from the blue side of the CFBG, red lines, (b) and (d), with pulses dispersed form the red side. (a) and (b) show time domain data collected by the oscilloscope. Waveform time reversal is evident, as is the difference in beat frequency between (a) and (b) caused by Doppler-range coupling (c) and (d) show spectral intensities as captured by the OSA. These two waveforms are similarly oriented but, like there time domain equivalents, exhibit Doppler-range coupling.

Fig. 8.
Fig. 8.

Apparent range values measured for different true ranges (delay stage positions). The blue and red lines correspond to pulses dispersed from the blue and red sides of the CFBG, respectively. The green line is the weighed average of these two, which is the measured true range. The ±60 micron offsets of the blue and red lines resulting from coupling of the +152 MHz Doppler shift into the range measurement are visible in the upper inset. The lower inset shows the Doppler frequency determined from the difference between blue and red curves in a similar scan with higher sampling density.

Fig. 9.
Fig. 9.

Single reflection point waveforms captured with the dispersion-last system and presented as in Fig. 7. No Doppler-range coupling is present; all signals exhibit the same beat under their envelopes. Interferometric phase drift over the duration of the spectral scan results in the small beat deviation in (c) and (d) with respect to (a) and (b).

Fig. 10.
Fig. 10.

Apparent range values measured for different true ranges (stage delay positions). The blue and red lines correspond to pulses dispersed from the blue and red sides of the CFBG, respectively. The blue line is drawn thicker to permit viewing. Agreement between the two measured ranges for each true range is on the order of 1μm. The inset shows the perceived Doppler shift, which is < 4MHz at all points, a significant reduction from the imposed +152 MHz shift.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Φ = Φ 0 Φ 1 ω 1 2 Φ 2 ω 2 1 6 Φ 3 ω 3
t = Φ ω = Φ 1 + Φ 2 ω + 1 2 Φ 3 ω 2 .
Ω inst ( t ' ) = ω c + t ' Φ 2
ω beat = Ω inst ( t ' ) Ω inst ( t ' τ ) = τ Φ 2 ,
Ω ( t ' ) = ω c + 2 t ' Φ 3 + ( Φ 2 Φ 3 ) 2 Φ 2 Φ 3 .
ω beat τ 2 Φ 3 t ' + ( Φ 2 ) 2 ,
t ' = t " + Φ 3 2 ( t " Φ 2 ) 2
E ( t ' ) = E 0 e 1 2 ( Ω ω c ) 2 Δ ω 2 e j 1 2 Φ 2 ( Ω ω c ) 2 e jΩt ' d Ω .
E ( t ' ) = αE 0 e 1 2 ( Ω ω c ) 2 Δ ω 2 e j 1 2 Φ 2 ( Ω ω c ) 2 e j Ω α t ' d Ω .
E ( t ' ) = α E 0 2 π Δ ω 2 + j Φ 2 e ( αt ' ) 2 Δ ω 2 + j Φ 2 e j ω c αt C e 1 2 ( αt ' ) 2 Δ ω 2 Φ 2 2 e j ( ω c αt ' + 1 2 ( αt ' ) 2 ( Φ 2 ) ) .
Ω inst ( t ' ) α ω c + α 2 t ' Φ 2 = α ( ω c + αt ' Φ 2 ) .
ω beat ( t ' ) α 2 τ Φ 2 + ( 1 α ) ω c 2 v c + t ' Φ 2 4 v c α 2 τ Φ 2 + ω c 2 v c + t ' Φ 2 4 v c .
R 1,2 = c 2 ( τ ± Φ 2 ω Doppler ) + 2 t ' v
E ( t ' ) = αE 0 e 1 2 ( Ω ω c ) 2 ( Δ ω ) 2 e j Ω α t ' d Ω = E 0 e 1 2 ( Ω αω c ) 2 ( α Δ ω ) 2 e j Ω α t ' d Ω
E ( t ' ) = 2 π E 0 e j 1 2 Φ 2 ( 1 α 2 ) ω c 2 ( α Δ ω ) 2 + j Φ 2 e ω c t " e 1 2 t " 2 2 ( α Δ ω ) 2 + j Φ 2 C e 1 2 t " 2 ( α Δ ω ) 2 Φ 2 2 e j ( αω c t " + 1 2 t " 2 Φ 2 ) .
Ω inst ( t " ) α ω c + t " Φ 2 , Ω inst ( t ' ) α ω c + t ' Φ 2 ( α 1 ) ω c Φ 2 = ω c + t ' Φ 2 ,

Metrics