Abstract

Phase measurements on self-assembled three-dimensional photonic crystals show that the group velocity of light can flip from small positive (slow) to negative (superluminal) values in samples of a few μm size. This phenomenon takes place in a narrow spectral range around the second-order stop band and follows from coupling to weakly dispersive photonic bands associated with multiple Bragg diffraction. The observations are well accounted for by theoretical calculations of the phase delay and of photonic states in the finite-sized systems.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anomalous group velocity at the high energy range of a 3D photonic nanostructure

Muriel Botey, Jordi Martorell, Luis A. Dorado, Ricardo A. Depine, Gabriel Lozano, and Hernán Míguez
Opt. Express 18(15) 15682-15690 (2010)

Light generation at the anomalous dispersion high energy range of a nonlinear opal film

Muriel Botey, Marc Maymó, Alberto Molinos-Gómez, Luis Dorado, Ricardo A. Depine, Gabriel Lozano, Agustín Mihi, Hernán Míguez, and Jordi Martorell
Opt. Express 17(15) 12210-12216 (2009)

Optics of an opal modeled with a stratified effective index and the effect of the interface

Isabelle Maurin, Elias Moufarej, Athanasios Laliotis, and Daniel Bloch
J. Opt. Soc. Am. B 32(8) 1761-1772 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (Academic Press, New York, 1960).
  2. M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301, 20–202 (2003).
    [Crossref]
  3. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1981).
    [Crossref]
  4. A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71, 708–711 (1993).
    [Crossref] [PubMed]
  5. L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [Crossref] [PubMed]
  6. A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
    [Crossref]
  7. M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, “The speed of information in a “fast-light” optical medium,” Nature 425, 695–698 (2003).
    [Crossref] [PubMed]
  8. G. Nimtz, “Superluminal speed of information?,” Nature 429, 6987 (2004).
    [Crossref]
  9. G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
    [Crossref] [PubMed]
  10. E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
    [Crossref]
  11. A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
    [Crossref] [PubMed]
  12. L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  13. Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  14. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  15. C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
    [Crossref]
  16. Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
    [Crossref]
  17. A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
    [Crossref]
  18. G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
    [Crossref]
  19. J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
    [Crossref]
  20. Yu.A. Vlasov, S. Fan, and D.J. Norris, ”Stop-band mediated diffraction,” presented at the International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 4), Los Angeles, USA, 2002.
  21. G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.
  22. J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108 (2004).
    [Crossref]
  23. F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
    [Crossref]
  24. E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
    [Crossref]
  25. J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
    [Crossref]
  26. M. Galli, F. Marabelli, and G. Guizzetti, “Direct measurement of refractive-index dispersion of transparent media by white-light interferometry,” Appl. Opt. 42, 3910–3914 (2003).
    [Crossref] [PubMed]
  27. D.M. Whittaker and I.S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [Crossref]
  28. A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006).
    [Crossref]
  29. K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [Crossref] [PubMed]
  30. Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
    [Crossref] [PubMed]
  31. D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
    [Crossref] [PubMed]
  32. F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
    [Crossref]
  33. Notice that the calculations of Fig. 4 are done for a non-relaxed FCC lattice, while those in Fig. 1(d) include material dispersion and a small in-plane relaxation in order to compare with the experiments.
  34. L. Bechger, P. Lodahl, and W.L. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B 109, 9980–9988 (2005).
    [Crossref]
  35. M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
    [Crossref]

2006 (4)

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006).
[Crossref]

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

2005 (5)

L. Bechger, P. Lodahl, and W.L. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B 109, 9980–9988 (2005).
[Crossref]

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
[Crossref]

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

2004 (3)

G. Nimtz, “Superluminal speed of information?,” Nature 429, 6987 (2004).
[Crossref]

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108 (2004).
[Crossref]

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

2003 (7)

M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, “The speed of information in a “fast-light” optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301, 20–202 (2003).
[Crossref]

C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
[Crossref]

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

M. Galli, F. Marabelli, and G. Guizzetti, “Direct measurement of refractive-index dispersion of transparent media by white-light interferometry,” Appl. Opt. 42, 3910–3914 (2003).
[Crossref] [PubMed]

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

2002 (1)

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

2001 (2)

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[Crossref] [PubMed]

2000 (1)

L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

1999 (4)

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
[Crossref]

D.M. Whittaker and I.S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

1995 (1)

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

1993 (1)

A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

1990 (1)

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

1981 (1)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1981).
[Crossref]

Agio, M.

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006).
[Crossref]

Akjouj, A.

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Andreani, L.C.

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006).
[Crossref]

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

Balestreri, A.

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006).
[Crossref]

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

Bechger, L.

L. Bechger, P. Lodahl, and W.L. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B 109, 9980–9988 (2005).
[Crossref]

Behroozi, C.H.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bigelow, M.S.

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301, 20–202 (2003).
[Crossref]

Bo, X.Z.

Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[Crossref] [PubMed]

Boudouti, E.H. El

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Boyd, R.W.

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301, 20–202 (2003).
[Crossref]

Braun, P.V.

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
[Crossref]

Brillouin, L.

L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (Academic Press, New York, 1960).

Cao, H.

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

Castillo-Martinez, E.

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Chan, C.T.

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Chang, R.P.H.

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

Chiao, R.Y.

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Chu, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1981).
[Crossref]

Comoretto, D.

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

Culshaw, I.S.

D.M. Whittaker and I.S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Djafari-Rouhani, B.

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Dobrzynski, L

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Dogariu, A.

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Dutton, Z.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Fan, S.

Yu.A. Vlasov, S. Fan, and D.J. Norris, ”Stop-band mediated diffraction,” presented at the International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 4), Los Angeles, USA, 2002.

Fettouhi, N.

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Freymann, G. von

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

Galisteo-López, J.F.

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
[Crossref]

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108 (2004).
[Crossref]

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Galli, M.

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

M. Galli, F. Marabelli, and G. Guizzetti, “Direct measurement of refractive-index dispersion of transparent media by white-light interferometry,” Appl. Opt. 42, 3910–3914 (2003).
[Crossref] [PubMed]

García-Santamaría, F.

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
[Crossref]

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

Gauthier, D.J.

M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, “The speed of information in a “fast-light” optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Guizzetti, G.

Hamann, H.F.

Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Harris, S.E.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Hau, L.V.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hickmann, J.M.

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

Hirlimann, C.

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

Ho, K.M.

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Honerlage, B.

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

Ibisate, M.

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

Imhof, A.

A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
[Crossref]

Jain, M.

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

John, S.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Kasapi, A.

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Kitaev, V.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Klein, G.

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

Kuzmich, A.

L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Kwiat, P.G.

A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Lagendijk, A.

A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
[Crossref]

Lepeshkin, N.N.

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301, 20–202 (2003).
[Crossref]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Linke, R.A.

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

Lodahl, P.

L. Bechger, P. Lodahl, and W.L. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B 109, 9980–9988 (2005).
[Crossref]

López, C.

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
[Crossref]

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108 (2004).
[Crossref]

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
[Crossref]

Marabelli, F.

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

M. Galli, F. Marabelli, and G. Guizzetti, “Direct measurement of refractive-index dispersion of transparent media by white-light interferometry,” Appl. Opt. 42, 3910–3914 (2003).
[Crossref] [PubMed]

McCormick, C.F.

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

McNabb, S.J.

Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Meseguer, F.

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

Morehead, J.J.

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

Nahata, A.

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

Neifeld, M.A.

M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, “The speed of information in a “fast-light” optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Nimtz, G.

G. Nimtz, “Superluminal speed of information?,” Nature 429, 6987 (2004).
[Crossref]

Norris, D.J.

Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[Crossref] [PubMed]

Yu.A. Vlasov, S. Fan, and D.J. Norris, ”Stop-band mediated diffraction,” presented at the International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 4), Los Angeles, USA, 2002.

O’Boyle, M.

Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Ozin, G. A.

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Ozin, G.A.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

Palacios-Lidón, E.

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Patrini, M.

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

Pavarini, E.

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

Petit, S.

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

Rodríguez, I.

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

Ropers, C.

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

Scharrer, M.

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

Soci, C.

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

Solli, D.R.

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

Sommerfeld, A.

L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (Academic Press, New York, 1960).

Soukoulis, C.M.

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Soukoulis, CM.

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Sprik, R.

A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
[Crossref]

Steinberg, A.M.

A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Stenner, M.D.

M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, “The speed of information in a “fast-light” optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Sturn, J.C.

Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[Crossref] [PubMed]

Tétreault, N.

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Trebino, R.

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

Vasseur, J.O.

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Vlasov, Y.A.

Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[Crossref] [PubMed]

Vlasov, Yu.A.

Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

Yu.A. Vlasov, S. Fan, and D.J. Norris, ”Stop-band mediated diffraction,” presented at the International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 4), Los Angeles, USA, 2002.

Von Freymann, G.

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Vos, W.L.

L. Bechger, P. Lodahl, and W.L. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B 109, 9980–9988 (2005).
[Crossref]

A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
[Crossref]

Wang, L.J.

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Whittaker, D.M.

D.M. Whittaker and I.S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Wong, S.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1981).
[Crossref]

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Wu, X.H.

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

Yamilov, A.

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

Yin, G.Y.

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

Zemmouri, J.

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

Adv. Mater. (2)

C. López, “Materials aspects of photonic crystals,” Adv. Mater. 15, 1679–1704 (2003).
[Crossref]

F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, and C. López, “Photonic bands engineering in opals by growth of Si/Ge multilayer shells,” Adv. Mater. 15, 788–792 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[Crossref]

Appl. Phys. Lett. (2)

G. von Freymann, S. John, S. Wong, V. Kitaev, and G.A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86, 053108 (2005).
[Crossref]

M. Scharrer, A. Yamilov, X.H. Wu, H. Cao, and R.P.H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103 (2006).
[Crossref]

J. Appl. Phys. (1)

E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J.O. Vasseur, L Dobrzynski, and J. Zemmouri, “Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures,” J. Appl. Phys. 95, 1102–1113 (2004).
[Crossref]

J. Phys. Chem. B (1)

L. Bechger, P. Lodahl, and W.L. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B 109, 9980–9988 (2005).
[Crossref]

Nature (6)

L.J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Y.A. Vlasov, X.Z. Bo, J.C. Sturn, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[Crossref] [PubMed]

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Yu.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNabb, ”Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

M.D. Stenner, D.J. Gauthier, and M.A. Neifeld, “The speed of information in a “fast-light” optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

G. Nimtz, “Superluminal speed of information?,” Nature 429, 6987 (2004).
[Crossref]

Phys. Rev. B (6)

J.F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L.C. Andreani, and C. López, “Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry,” Phys. Rev. B 73, 125103 (2006).
[Crossref]

D.M. Whittaker and I.S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

J.F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108 (2004).
[Crossref]

F. García-Santamaría, J.F. Galisteo-López, P.V. Braun, and C. López, “Optical diffraction and high-energy features in three-dimensional photonic crystals,” Phys. Rev. B 71, 195112 (2005).
[Crossref]

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, and D. Comoretto, “Band structure and optical properties of opal photonic crystals,” Phys. Rev. B 72, 195112 (2005).
[Crossref]

J.F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Phys. Rev. E (2)

A. Balestreri, L.C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006).
[Crossref]

Yu.A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999).
[Crossref]

Phys. Rev. Lett (1)

D.R. Solli, C.F. McCormick, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, “Demonstration of superluminal effects in an absorptionless, nonreflective system,” Phys. Rev. Lett 91, 143906 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999).
[Crossref]

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref] [PubMed]

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1981).
[Crossref]

A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the Single-Photon Tunneling Time,” Phys. Rev. Lett. 71, 708–711 (1993).
[Crossref] [PubMed]

Science (2)

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301, 20–202 (2003).
[Crossref]

G. Dolling, C. Enkrich, M. Wegener, CM. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Other (5)

L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (Academic Press, New York, 1960).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

Yu.A. Vlasov, S. Fan, and D.J. Norris, ”Stop-band mediated diffraction,” presented at the International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 4), Los Angeles, USA, 2002.

G. Von Freymann, S. John, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, “Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands,” presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.

Notice that the calculations of Fig. 4 are done for a non-relaxed FCC lattice, while those in Fig. 1(d) include material dispersion and a small in-plane relaxation in order to compare with the experiments.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Transmission for opals made from 705 nm spheres having an increasing thickness. (b,c) Absolute phase in transmission for opals of increasing thickness made from 505 and 705 nm spheres, respectively. (d) Calculated phase for the 705 nm spheres sample.

Fig. 2.
Fig. 2.

Difference between the absolute phase delay for two sample thicknesses, before and after the phase flip has taken place, from 6 to 7 layers in the calculation (black curve) and 7 to 8 in the experiment (blue and red curves).

Fig. 3.
Fig. 3.

Group index as a function of reduced frequency for samples made of 705 nm spheres, with increasing number of layers: (a) experimental, (b) calculated results.

Fig. 4.
Fig. 4.

Band structure along the ΓL direction for an artificial opal made from spheres of refractive index 1.59 (left panel). Calculated phase for a sample having an increasing number of layers, from 1 to 20, left to right (right panel). Grey boxes indicate the spectral regions where only diffraction bands are found in the dispersion relation. Inset shows the phase difference between the two edges of the second order pseudogap (taken from a/λ=1.14 to 1.23).

Fig. 5.
Fig. 5.

Left and right panels show dispersion relations for opals having 4 and 5 (111) layers, obtained with a supercell method (the hexagonal Brillouin zone with symmetry points is shown in the inset). Bands reminiscent of normal dispersion are highlighted with red semi-transparent lines. Central panel shows calculated phase for the same structures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n g = c ν g = c D

Metrics