Abstract

High efficiency, broad-band TE-polarization diffraction over a wavelength range centered at 800 nm is obtained by high index gratings placed on a non-corrugated mirror. More than 96% efficiency wide band top-hat diffraction efficiency spectra, as well as more than 1 J/cm2 damage threshold under 50 fs pulses are demonstrated experimentally. This opens the way to high-efficiency Chirped Pulse Amplification for high average power laser machining by means of all-dielectric structures as well as for ultra-short high energy pulses by means of metal-dielectric structures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  2. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, "High-efficiency metallic diffraction gratings for laser applications," Appl. Opt. 34, 1697-1706 (1995).
    [CrossRef] [PubMed]
  3. J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, and R. Chow, "High efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold," Proc. SPIE 2714, 511-520 (1996).
    [CrossRef]
  4. A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
    [CrossRef]
  5. A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys 36, 1038-1040 (1991).
  6. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, "High-Efficiency Dielectric Reflection Gratings: Design, Fabrication, and Analysis," Appl. Opt. 38, 6257-6271 (1999).
    [CrossRef]
  7. J. Néauport and N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
    [CrossRef]
  8. M. Flury, A. V. Tishchenko, and O. Parriaux, "The leaky mode resonance condition ensures 100% diffraction efficiency of mirror based resonant gratings," J. Lightwave Technol. 25, 1870-1878 (2007).
    [CrossRef]
  9. B. Touzet and J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photonics Spectra 37, 68-75 (2003).
  10. A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
    [CrossRef]
  11. F. Canova, J. P. Chambaret, O. Uteza, P. Delaporte, M. Tondusson, E. Freysz, O. Parriaux, M. Flury, S. Tonchev, and N. Lyndin, ">97% top-hat efficiency, >4 J/cm2 damage threshold compression gratings," in Proceedings of International Conference on Ultrahigh Intensity Lasers, 25-28 Sept. 2006, Cassis, France.
  12. A. V. Tishchenko and V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1031 (2000).
    [CrossRef]
  13. E. Gerstner, "Extreme Light," Nature 446, 17-18 (2007).
    [CrossRef]
  14. A. V. Tishchenko and N. Lyndin, "The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also!)," Proc. Workshop on grating theory, Clermont-Ferrand, France, June 2004.
  15. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Am. A 14, 1124-1136 (1997).
    [CrossRef]
  16. R. G. Ahrens and D. M. Tennant, "Resist profile enhancement in near field holographic printing using bottom anti-relfection coatings," Microelectron Eng. 35, 229-234 (1997).
    [CrossRef]
  17. C. Dorrer, "Implementation for spectral phase interferometry for direct electric field reconstruction with a simultaneously recorded reference interferogram," Opt. Lett. 24, 1532-1534 (1999).
    [CrossRef]

2007

2006

J. Néauport and N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
[CrossRef]

2003

B. Touzet and J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photonics Spectra 37, 68-75 (2003).

2002

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

2001

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

2000

A. V. Tishchenko and V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1031 (2000).
[CrossRef]

1999

1997

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Am. A 14, 1124-1136 (1997).
[CrossRef]

R. G. Ahrens and D. M. Tennant, "Resist profile enhancement in near field holographic printing using bottom anti-relfection coatings," Microelectron Eng. 35, 229-234 (1997).
[CrossRef]

1996

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, and R. Chow, "High efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold," Proc. SPIE 2714, 511-520 (1996).
[CrossRef]

1995

1991

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys 36, 1038-1040 (1991).

1985

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Ahrens, R. G.

R. G. Ahrens and D. M. Tennant, "Resist profile enhancement in near field holographic printing using bottom anti-relfection coatings," Microelectron Eng. 35, 229-234 (1997).
[CrossRef]

Bauer, T.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Baures, P. Y.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Bercegol, H.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Bischoff, J.

Blanchot, N.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Bödefeld, R.

Bonod, N.

J. Néauport and N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Chow, R.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Am. A 14, 1124-1136 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, and R. Chow, "High efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold," Proc. SPIE 2714, 511-520 (1996).
[CrossRef]

Decker, D. E.

Dijon, J.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Dorrer, C.

Feit, M. D.

Flury, M.

Gerstner, E.

E. Gerstner, "Extreme Light," Nature 446, 17-18 (2007).
[CrossRef]

Gilchrist, J. R.

B. Touzet and J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photonics Spectra 37, 68-75 (2003).

Hehl, K.

Heyer, H.

Howorth, J. R.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Korte, F.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Li, L.

Loomis, G. E.

B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Am. A 14, 1124-1136 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, and R. Chow, "High efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold," Proc. SPIE 2714, 511-520 (1996).
[CrossRef]

Mohaupt, U.

Momma, C.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Néauport, J.

J. Néauport and N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
[CrossRef]

Nguyen, H. T.

Ostendorf, A.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Palme, M.

Parriaux, O.

Perry, M. D.

Reichart, A.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Rizvi, N. H.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Salin, F.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Sauerbrey, R.

Sauteret, C.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Saviot, F.

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

Schnabel, B.

Shore, B. W.

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Stuart, B. C.

Svakhin, A. S.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys 36, 1038-1040 (1991).

Sychugov, V. A.

A. V. Tishchenko and V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1031 (2000).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys 36, 1038-1040 (1991).

Tennant, D. M.

R. G. Ahrens and D. M. Tennant, "Resist profile enhancement in near field holographic printing using bottom anti-relfection coatings," Microelectron Eng. 35, 229-234 (1997).
[CrossRef]

Theobald, W.

Tikhomirov, A. E.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys 36, 1038-1040 (1991).

Tishchenko, A. V.

M. Flury, A. V. Tishchenko, and O. Parriaux, "The leaky mode resonance condition ensures 100% diffraction efficiency of mirror based resonant gratings," J. Lightwave Technol. 25, 1870-1878 (2007).
[CrossRef]

A. V. Tishchenko and V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1031 (2000).
[CrossRef]

Touzet, B.

B. Touzet and J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photonics Spectra 37, 68-75 (2003).

Wattelier, B.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Welsch, E.

Wenke, L.

Zou, J. P.

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Appl. Opt.

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Phys. IV France

J. Néauport and N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
[CrossRef]

Microelectron Eng.

R. G. Ahrens and D. M. Tennant, "Resist profile enhancement in near field holographic printing using bottom anti-relfection coatings," Microelectron Eng. 35, 229-234 (1997).
[CrossRef]

Nature

E. Gerstner, "Extreme Light," Nature 446, 17-18 (2007).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

A. V. Tishchenko and V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1031 (2000).
[CrossRef]

Photonics Spectra

B. Touzet and J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photonics Spectra 37, 68-75 (2003).

Proc. SPIE

A. Ostendorf, T. Bauer, F. Korte, J. R. Howorth, C. Momma, N. H. Rizvi, F. Saviot, and F. Salin, "Development of an industrial femtosecond laser micromachining system," Proc. SPIE 4633, 128-135 (2002).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, and R. Chow, "High efficiency dielectric multilayer gratings optimized for manufacturability and laser damage threshold," Proc. SPIE 2714, 511-520 (1996).
[CrossRef]

A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, "CPA compression gratings with improved damage performance," Proc. SPIE 4347, 521-527 (2001).
[CrossRef]

Sov. Phys. Tech. Phys

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys 36, 1038-1040 (1991).

Other

F. Canova, J. P. Chambaret, O. Uteza, P. Delaporte, M. Tondusson, E. Freysz, O. Parriaux, M. Flury, S. Tonchev, and N. Lyndin, ">97% top-hat efficiency, >4 J/cm2 damage threshold compression gratings," in Proceedings of International Conference on Ultrahigh Intensity Lasers, 25-28 Sept. 2006, Cassis, France.

A. V. Tishchenko and N. Lyndin, "The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also!)," Proc. Workshop on grating theory, Clermont-Ferrand, France, June 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross-sectional view of the dielectric mirror based leaky mode propagating structure with binary corrugation in the last high index layer. TE incidence is under angle θi, diffraction along the sole -1st order.

Fig. 2.
Fig. 2.

Optimized -1st order diffraction efficiency spectra. a) according to the state of the art with corrugated silica layer on a quarter-wave dielectric mirror. b) of the optimised broad band character of the present all-dielectric structure.

Fig. 3.
Fig. 3.

AFM scan of a typical hafnia grating of an all-dielectric grating.

Fig. 4.
Fig. 4.

Experimental diffraction efficiency spectrum under 57 degree TE incidence.

Fig. 5.
Fig. 5.

Cross-sectional view of the metal-mirror based multilayer with binary corrugation in the last high index layer. TE incidence is under angle θi, diffraction along the sole -1st order.

Fig. 6.
Fig. 6.

Optimized diffraction efficiency spectrum of a high index hafnia grating on a silver mirror with protective layer.

Fig. 7.
Fig. 7.

AFM scan of a small line/space ratio resist grating on top of the CuO layer.

Fig. 8.
Fig. 8.

Experimentally measured -1st order diffraction efficiency and 0th reflected order spectra under 57 degree TE incidence.

Fig. 9.
Fig. 9.

Laser damage threshold measurement setup: Incident laser beam characteristics: 800 nm center wavelength, 1 kHz repetition rate, about 40 fs duration (FWHM) and 80 μJ available. a: Pockels cell, b: polarizer, c: λ/2 wave plate, d: polarizer, e: Joule meter, f: 150 mm focal length lens, g: 12 bits camera. The grating normal makes an angle α with the beam axis.

Fig. 10.
Fig. 10.

Optical microscope picture of the grating surface after 15 exposures to 10000 shots of decreasing energy of 1 μJ increment with a beam waist of about 55 μm normally to the incident beam.

Tables (1)

Tables Icon

Table 1. Damage threshold, incidence angle and grating period of the mixed and all-dielectric gratings, and of the gratingless multilayer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ 2 · tan ( κ 2 t 2 ϕ a 2 ) + κ 1 · tan ( κ 1 t 1 ϕ m 2 ) = 0

Metrics