Abstract

In this paper, we present a new optical range low pass filter based on plasmonic nanostrip waveguides. We calculate the characteristic impedance of plasmonic nanostrip waveguides and compare it with that of microstrip transmission lines. An optical range maximally flat low pass filter with subwavelength dimensions is designed based on the nanostrip waveguide structure. Finite-difference time-domain (FDTD) simulations of the designed optical range filter are presented, which demonstrate subwave-length light confinement as well as acceptable filter cutoff performance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).
  2. I. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Exp. 13, 6645–6650 (2005).
    [Crossref]
  3. E. Ozbay, “Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  4. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” App. Phys. Lett. 30, 1186–1188 (2005).
  5. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” App. Phys. Lett. 90, 181,102 (2007).
    [Crossref]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref] [PubMed]
  7. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Exp. 14, 11,318–11,323 (2006).
    [Crossref]
  8. S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
    [Crossref] [PubMed]
  9. A. Hosseini and Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24, 221–224 (2007).
    [Crossref]
  10. G. Veronis and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [Crossref]
  11. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band,” J. Lightwave Technol. 25, 2757–2765 (2007).
    [Crossref]
  12. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” App. Phys. Lett. 87, 131,102 (2005).
    [Crossref]
  13. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 72, 4370–4379 (1972).
    [Crossref]
  14. A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Exp. 14, 7291–7298 (2006).
    [Crossref]
  15. I. Bahl and R. Garg, “Simple and accurate formulas for a microstrip with finite strip thickness,” Proceedings of the IEEE 65, 1611–1612 (1977).
    [Crossref]
  16. M. K. C. Rappaport and E. Miller, “Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation,” International Journal of Numerical Modelling 13, 471–482 (2000).
    [Crossref]
  17. C. Oubre and P. Nordlander, “Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers,” J. Phys. Chem. B 20, 10,042–10,051 (2005).

2007 (4)

2006 (5)

A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Exp. 14, 7291–7298 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Exp. 14, 11,318–11,323 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).

E. Ozbay, “Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

2005 (5)

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” App. Phys. Lett. 30, 1186–1188 (2005).

I. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Exp. 13, 6645–6650 (2005).
[Crossref]

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” App. Phys. Lett. 87, 131,102 (2005).
[Crossref]

C. Oubre and P. Nordlander, “Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers,” J. Phys. Chem. B 20, 10,042–10,051 (2005).

2000 (1)

M. K. C. Rappaport and E. Miller, “Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation,” International Journal of Numerical Modelling 13, 471–482 (2000).
[Crossref]

1977 (1)

I. Bahl and R. Garg, “Simple and accurate formulas for a microstrip with finite strip thickness,” Proceedings of the IEEE 65, 1611–1612 (1977).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 72, 4370–4379 (1972).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).

Bahl, I.

I. Bahl and R. Garg, “Simple and accurate formulas for a microstrip with finite strip thickness,” Proceedings of the IEEE 65, 1611–1612 (1977).
[Crossref]

Bozhevolnyi, S.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 72, 4370–4379 (1972).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).

Ebbesen, T.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[Crossref]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” App. Phys. Lett. 87, 131,102 (2005).
[Crossref]

Garg, R.

I. Bahl and R. Garg, “Simple and accurate formulas for a microstrip with finite strip thickness,” Proceedings of the IEEE 65, 1611–1612 (1977).
[Crossref]

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” App. Phys. Lett. 30, 1186–1188 (2005).

Han, Z.

I. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Exp. 13, 6645–6650 (2005).
[Crossref]

He, S.

I. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Exp. 13, 6645–6650 (2005).
[Crossref]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” App. Phys. Lett. 90, 181,102 (2007).
[Crossref]

A. Hosseini and Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24, 221–224 (2007).
[Crossref]

A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Exp. 14, 7291–7298 (2006).
[Crossref]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Exp. 14, 11,318–11,323 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 72, 4370–4379 (1972).
[Crossref]

Jung, K. Y.

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Liu, I.

I. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Exp. 13, 6645–6650 (2005).
[Crossref]

Massoud, Y.

A. Hosseini and Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24, 221–224 (2007).
[Crossref]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” App. Phys. Lett. 90, 181,102 (2007).
[Crossref]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Exp. 14, 11,318–11,323 (2006).
[Crossref]

A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Exp. 14, 7291–7298 (2006).
[Crossref]

Miller, E.

M. K. C. Rappaport and E. Miller, “Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation,” International Journal of Numerical Modelling 13, 471–482 (2000).
[Crossref]

Nieuwoudt, A.

A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Exp. 14, 7291–7298 (2006).
[Crossref]

Nordlander, P.

C. Oubre and P. Nordlander, “Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers,” J. Phys. Chem. B 20, 10,042–10,051 (2005).

Oubre, C.

C. Oubre and P. Nordlander, “Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers,” J. Phys. Chem. B 20, 10,042–10,051 (2005).

Ozbay, E.

E. Ozbay, “Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” App. Phys. Lett. 30, 1186–1188 (2005).

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).

Rappaport, M. K. C.

M. K. C. Rappaport and E. Miller, “Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation,” International Journal of Numerical Modelling 13, 471–482 (2000).
[Crossref]

Reano, R. M.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).

Teixeira, F. L.

Veronis, G.

G. Veronis and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[Crossref]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” App. Phys. Lett. 87, 131,102 (2005).
[Crossref]

Volkov, V.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

App. Phys. Lett. (3)

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” App. Phys. Lett. 30, 1186–1188 (2005).

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” App. Phys. Lett. 90, 181,102 (2007).
[Crossref]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” App. Phys. Lett. 87, 131,102 (2005).
[Crossref]

International Journal of Numerical Modelling (1)

M. K. C. Rappaport and E. Miller, “Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation,” International Journal of Numerical Modelling 13, 471–482 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

C. Oubre and P. Nordlander, “Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers,” J. Phys. Chem. B 20, 10,042–10,051 (2005).

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Opt. Exp. (3)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Exp. 14, 11,318–11,323 (2006).
[Crossref]

I. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Exp. 13, 6645–6650 (2005).
[Crossref]

A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Exp. 14, 7291–7298 (2006).
[Crossref]

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 72 (2006).

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 72, 4370–4379 (1972).
[Crossref]

Physical Review Letters (1)

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,” Physical Review Letters 95, 046,802(4) (2005).
[Crossref] [PubMed]

Proceedings of the IEEE (1)

I. Bahl and R. Garg, “Simple and accurate formulas for a microstrip with finite strip thickness,” Proceedings of the IEEE 65, 1611–1612 (1977).
[Crossref]

Science (1)

E. Ozbay, “Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the nanostrip waveguide structure. FDFD simulation results for nanostrip waveguide, t = 20 nm, w = 100 nm and d = 25 nm at λ =1.55 μm, (b) power density profile ( P z ), (c) electric (dashed lines) and magnetic (solid lines) field lines.

Fig. 2.
Fig. 2.

Effective index and modal size versus nanostrip width for t = 20 nm and different d values at λ=1.55 μm. Red and blue (circles) lines indicate d = 35 nm and d = 25 nm, respectively.

Fig. 3.
Fig. 3.

Characteristic impedance (Z0) versus metal strip width (w) for t = 20 nm and different d values at λ=1.55 μm. The blue lines show the impedance values calculated from the FDFD simulation results using Eq. (1), and the red lines (circles) show the impedance values calculated for a microstrip transmission line [15] with the same dimensions.

Fig. 4.
Fig. 4.

(a) Equivalent LC ladder circuit model for the 6th order maximally flat low pass filter. (b) Top view of the presented nanostrip 6th order maximally flat low pass filter. Dimensions are in nanometer.

Fig. 5.
Fig. 5.

FDTD simulation results of the nanostrip based 6th order maximally flat low pass filter. (a) Frequency response, (b) power transmission density ( P z ) at λ0 = 0.80 μm, (c) power transmission density ( P z ) at λ0 = 2.00 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z 0 = V I = s E . dl c H . dl ,
Z 0 = η ε eq [ w eq d + 1.393 + 0.667 ln ( w eq d + 1.444 ) ] 1
ε eq = n eff 2 ε r 1 4.6 t d w d
w eq = { w + 1.25 t π ( 1 + ln 4 πw t ) ( w d 0.5 π ) w + 1.25 t π ( 1 + ln 2 d t ) ( w d 0.5 π )

Metrics