Abstract

Fractal shaped structures formed with a 100-nm-period square lattice of gold nanoparticles placed on a gold film are characterized by using far-field nonlinear scanning optical microscopy, in which two-photon photoluminescence (TPL) excited with a strongly focused laser beam (in the wavelength range of 730 – 790 nm) is detected. The TPL images recorded for all wavelengths exhibit diffraction-limited (~ 0.6 μm) bright spots corresponding to the field intensity enhancement of up to 150, whose positions are dictated by the incident light wavelength and polarization. We relate these field enhancements to the occurrence of constructive interference of surface plasmons (SPs), which are excited by the incident radiation (due to scattering by nanoparticles) and partially reflected by fractal shaped boundaries due to a difference in the SP effective index at a flat and periodically corrugated gold surface. The conjecture on SP index difference is verified with observations (using leakage radiation microscopy) of SP focusing by circular and waveguiding by rectangular areas filled with periodically arranged nanoparticles.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Markel and T. F. George, eds., Optics of Nanostructured Materials, (John Wiley and Sons, New York, NY, 2001).
  2. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
    [CrossRef]
  3. E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-Field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
    [CrossRef]
  4. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
    [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    [CrossRef]
  7. A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
    [CrossRef]
  8. A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
    [CrossRef]
  9. S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
    [CrossRef]
  10. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185 (1969).
    [CrossRef]
  11. G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923 (1986).
    [CrossRef]
  12. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
    [CrossRef]
  13. A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83, 5041 (2003).
    [CrossRef]
  14. J. Beermann and S. I. Bozhevolnyi, "Microscopy of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. B 69, 155429 (2004).
    [CrossRef]
  15. K. Falconer, Fractal Geometry: Mathematical Foundations and Application (John Wiley and Sons, Chichester, UK, 2003).
  16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
    [CrossRef]
  17. T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, "Theoretical analysis of ridge gratings for long-range surface plasmon polaritons," Phys. Rev. B. 73, 045320 (2006).
    [CrossRef]
  18. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
    [CrossRef]
  19. C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
    [CrossRef]
  20. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15, 6576-6582 (2007).
    [CrossRef]

2007 (2)

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15, 6576-6582 (2007).
[CrossRef]

2006 (1)

T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, "Theoretical analysis of ridge gratings for long-range surface plasmon polaritons," Phys. Rev. B. 73, 045320 (2006).
[CrossRef]

2005 (3)

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

2004 (1)

J. Beermann and S. I. Bozhevolnyi, "Microscopy of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. B 69, 155429 (2004).
[CrossRef]

2003 (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83, 5041 (2003).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

2000 (1)

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
[CrossRef]

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
[CrossRef]

1999 (2)

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-Field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923 (1986).
[CrossRef]

1984 (1)

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

1969 (1)

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185 (1969).
[CrossRef]

Barclay, P. E.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef]

Beermann, J.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, "Microscopy of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. B 69, 155429 (2004).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83, 5041 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15, 6576-6582 (2007).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, "Theoretical analysis of ridge gratings for long-range surface plasmon polaritons," Phys. Rev. B. 73, 045320 (2006).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83, 5041 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923 (1986).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Bozhevolnyi, S. I.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15, 6576-6582 (2007).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, "Theoretical analysis of ridge gratings for long-range surface plasmon polaritons," Phys. Rev. B. 73, 045320 (2006).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, "Microscopy of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. B 69, 155429 (2004).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef]

Coello, V.

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Even, C.

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

Evlyukhin, A. B.

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

Friedman, M. D.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Garcia-Vidal, F.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Hohenau, A.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Leite, J. R. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Maier, S. A.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Martin-Moreno, L.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Mooradian, A.

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185 (1969).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83, 5041 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-Field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

Painter, O.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Pieranski, P.

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Radko, I. P.

Rasing, Th.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Repain, V.

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Russ, S.

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-Field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

Sapoval, B.

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

Sarychev, A. K.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Shalaev, V. M.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923 (1986).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, "Theoretical analysis of ridge gratings for long-range surface plasmon polaritons," Phys. Rev. B. 73, 045320 (2006).
[CrossRef]

Stockman, M. I.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-Field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923 (1986).
[CrossRef]

Appl. Phys. Lett. (2)

A. Bouhelier, M. R. Beversluis, and L. Novotny, "Characterization of nanoplasmonic structures by locally excited photoluminescence," Appl. Phys. Lett. 83, 5041 (2003).
[CrossRef]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter,  14, R597-R624 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep. 335, 275 (2000);M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 1, p. 313, and references therein.
[CrossRef]

Phys. Rev. B (5)

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, "Microscopy of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. B 69, 155429 (2004).
[CrossRef]

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923 (1986).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Phys. Rev. B. (1)

T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, "Theoretical analysis of ridge gratings for long-range surface plasmon polaritons," Phys. Rev. B. 73, 045320 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef]

C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, "Localizations in fractal drums: An experimental study," Phys. Rev. Lett. 83, 726-729 (1999).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-Field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef]

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185 (1969).
[CrossRef]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Other (2)

V. M. Markel and T. F. George, eds., Optics of Nanostructured Materials, (John Wiley and Sons, New York, NY, 2001).

K. Falconer, Fractal Geometry: Mathematical Foundations and Application (John Wiley and Sons, Chichester, UK, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics