Abstract

By adjusting the coating parameters to vary the refractive index of the thin film material, we are able to fine tune the bandwidth of a narrow bandpass filter to an arbitrary value. The relation between the varied index Δn and the maximum arbitrary bandwidth was analyzed. A 4-skip-0 bandpass filter for a 100 GHz DWDM system was designed and fabricated. In addition, the relation between the tolerance of the index and the bandwidth was also analyzed to avoid broadening or narrowing the bandwidth. The final results showed that the arbitrary bandwidth met the requirements very well.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Lee, S. H. Chen and C. C. Kuo, "Fabrication of dense wavelength division multiplexing filters with large useful area," Proc. SPIE 6286, 62860E (2006).
    [CrossRef]
  2. H. A. Macleod, "Tutorial on the design of telecommunication filters," in Conference on Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2001) paper PWC1.
  3. P. Baumeister, "Bandpass Filters for Wavelength Division Multiplexing-Modification of the Spectral Bandwidth," Appl. Opt. 37, 6609-6614 (1998).
    [CrossRef]
  4. R R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398, 1-9 (2001).
    [CrossRef]
  5. P. Baumeister, "Design of a wavelength-division multiplexing bandpass with quasi-Chebyshev spectral shape," Appl. Opt. 40, 1132- 1137 (2001).
    [CrossRef]
  6. H. A. Macleod, Thin-Film Optical Filters, 3rd Ed., (Institute of Physics Publishing, 2001), Chap. 7.2.2.
    [CrossRef]

2006

C. C. Lee, S. H. Chen and C. C. Kuo, "Fabrication of dense wavelength division multiplexing filters with large useful area," Proc. SPIE 6286, 62860E (2006).
[CrossRef]

2001

R R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398, 1-9 (2001).
[CrossRef]

P. Baumeister, "Design of a wavelength-division multiplexing bandpass with quasi-Chebyshev spectral shape," Appl. Opt. 40, 1132- 1137 (2001).
[CrossRef]

1998

Baumeister, P.

Chen, S. H.

C. C. Lee, S. H. Chen and C. C. Kuo, "Fabrication of dense wavelength division multiplexing filters with large useful area," Proc. SPIE 6286, 62860E (2006).
[CrossRef]

Kuo, C. C.

C. C. Lee, S. H. Chen and C. C. Kuo, "Fabrication of dense wavelength division multiplexing filters with large useful area," Proc. SPIE 6286, 62860E (2006).
[CrossRef]

Lee, C. C.

C. C. Lee, S. H. Chen and C. C. Kuo, "Fabrication of dense wavelength division multiplexing filters with large useful area," Proc. SPIE 6286, 62860E (2006).
[CrossRef]

Willey, R R.

R R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398, 1-9 (2001).
[CrossRef]

Appl. Opt.

Proc. SPIE

C. C. Lee, S. H. Chen and C. C. Kuo, "Fabrication of dense wavelength division multiplexing filters with large useful area," Proc. SPIE 6286, 62860E (2006).
[CrossRef]

Thin Solid Films

R R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398, 1-9 (2001).
[CrossRef]

Other

H. A. Macleod, "Tutorial on the design of telecommunication filters," in Conference on Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2001) paper PWC1.

H. A. Macleod, Thin-Film Optical Filters, 3rd Ed., (Institute of Physics Publishing, 2001), Chap. 7.2.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Solutions of pass bandwidths for different spacer materials, orders m and x

Fig. 2.
Fig. 2.

Relation between the variation of the index Δn and the maximum arbitrary bandwidth

Fig. 3.
Fig. 3.

Sketch of the 4-skip-0 bandpass filter with 100GHz DWDM filters

Fig. 4
Fig. 4

Relation between the Ar flow rate in an ion source and the index of Nb2O5

Fig. 5
Fig. 5

Fabrication result for a 4-skip-0 bandpass filter

Tables (1)

Tables Icon

Table 1. Requirements and designs of a 4-skip-0 bandpass filter

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 R a ) ( 1 R b ) [ 1 ( R a R b ) 1 2 ] 2 [ 1 1 + F sin 2 ϕ ] ,
BW H ( m , x ) = 1 m ( n L n H ) 2 x 4 n S π n H λ c ( n H n L n H n L + n L m ) ( for the high− index spacer ) ,
BW L ( m , x ) = 1 m ( n L n H ) 2 x 4 n S π n L λ c ( n H n L n H n L + n L m ) ( for the low− index spacer ) ,
BW H ΔH ( m , x ) = BW L ( m , x )
BW L ΔH ( m , x ) = BW H ( m , x 1 )
1 m ( n L n H ΔH ) 2 x 4 n S π n H ΔH λ c ( n H−ΔH n L n H−ΔH n L + n L m ) = 1 m ( n L n H ) 2 x 4 n S π n L λ c ( n H n L n H n L + n L m )
1 m ( n L n H ΔH ) 2 x 4 n S π n L λ c ( n H−ΔH n L n H−ΔH n L + n L m ) = 1 m ( n L n H ) 2 x 2 4 n S π n H λ c ( n H n L n H n L + n L m ) .
Δn n H [ 1 ( n L n H ) 1 2 x + 1 ]
Δn n H [ 1 ( n L n H ) 1 2 x ] .
BW H ΔH ( m , x ) = BW L ( m , x )
BW L ΔH ( m , x ) = BW H ( m 1 , x )
1 m ( n L n H ΔH ) 2 x 4 n S π n H ΔH λ c ( n H−ΔH n L n H−ΔH n L + n L m ) = 1 m ( n L n H ) 2 x 4 n S π n L λ c ( n H n L n H n L + n L m )
1 m ( n L n H ΔH ) 2 x 4 n S π n L λ c ( n H−ΔH n L n H−ΔH n L + n L m ) = 1 m 1 ( n L n H ) 2 x 4 n S π n H λ c ( n H n L n H n L + n L m ) .
Δn n H [ 1 ( n L n H ) 1 2 x + 1 ]
Δn n H [ 1 ( m 1 m n H n L ) 1 2 x ]
BW max ( Δn ) ( n L n H ) 2 x 1 4 n S π n H λ c ( n H n L n H n L + n L m ) , where x = ln ( n L n H ) 2 ln ( 1 Δn n H ) ,
BW’ = BW ( 1 + 2 n H )

Metrics