Abstract

Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
    [CrossRef]
  2. R. Allingham, K. Damji, S. Freedman, S. Moroi, G. Shafranov, and M. Shields, Shields’ textbook of Glaucoma, Fifth Edition, (Lippincott Williams & Wilkins, 2005).
  3. E. Dienstbier, J. Balik, and H. Kafka, "A contribution to the theory of the vascular theory of glaucoma," Br. J. Ophthalmol. 34, 47-58 (1950).
    [CrossRef] [PubMed]
  4. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, "Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography," Opt. Lett. 27, 409-411 (2002).
    [CrossRef]
  5. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography," Opt. Lett. 24, 1584-1586 (1999).
    [CrossRef]
  6. H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
    [CrossRef]
  7. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
    [CrossRef]
  8. J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).
  9. E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
    [CrossRef]
  10. V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
    [CrossRef]
  11. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
    [CrossRef] [PubMed]
  12. A. Weber, M. Cheney, Q. Smithwick, and A. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004).
    [CrossRef]
  13. A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

2007

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

2005

2004

2003

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

2002

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, "Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography," Opt. Lett. 27, 409-411 (2002).
[CrossRef]

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

2000

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

1999

1996

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

1950

E. Dienstbier, J. Balik, and H. Kafka, "A contribution to the theory of the vascular theory of glaucoma," Br. J. Ophthalmol. 34, 47-58 (1950).
[CrossRef] [PubMed]

Balik, J.

E. Dienstbier, J. Balik, and H. Kafka, "A contribution to the theory of the vascular theory of glaucoma," Br. J. Ophthalmol. 34, 47-58 (1950).
[CrossRef] [PubMed]

Berry, C

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

Blumenthal, E.

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

Brecke, K. M.

Chen, Z.

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, "Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography," Opt. Lett. 27, 409-411 (2002).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Cheney, M.

Cobbold, R.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Coker, J.

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Correnti, A.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Costa, V. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Dienstbier, E.

E. Dienstbier, J. Balik, and H. Kafka, "A contribution to the theory of the vascular theory of glaucoma," Br. J. Ophthalmol. 34, 47-58 (1950).
[CrossRef] [PubMed]

Ding, Z.

Elsner, A.

Feke, G.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Flammer, J.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Fujimoto, J.

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Fujimoto, J. G.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Fujio, N.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Girkin, C

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Gregori, G

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

Gregori, G.

Guedes, V.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Hee, M.

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Hertzmark, E.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Huang, X.

Izatt, J. A.

Jiao, S

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

Jiao, S.

Kafka, H.

E. Dienstbier, J. Balik, and H. Kafka, "A contribution to the theory of the vascular theory of glaucoma," Br. J. Ophthalmol. 34, 47-58 (1950).
[CrossRef] [PubMed]

Knighton, R.

Konno, S.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Kulkarni, M. D.

Lederer, D.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Mancini, R.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Mattox, C.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Mcmeel, J.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Mok, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Mori, F.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Nagaoka, T.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Nelson, J. S.

Ogasawara, H.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Orgül, S.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Orzalesi, N.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Pakter, H.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Pedut-Kloizman, T.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Puliafito, C.

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Puliafito, C. A.

Ren, H.

Renard, J. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Rollins, A. M.

Ruggeri, M

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

Schuman, J.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Serra, L. M.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Smithwick, Q.

Stefánsson, E.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Swanson, E.

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

van Leeuwen, T. G.

Velazquez, L.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Vitkin, I.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Voskanian, S.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Weber, A.

Wehbe, H.

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

Weinreb, R

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

Wilkins, J.

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

Williams, J.

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

Wilson, B.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Wollstein, G.

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Yazdanfar, S.

Yoshida, A.

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Zhao, Y.

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, "Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography," Opt. Lett. 27, 409-411 (2002).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Am. J. Ophthalmology

A. Yoshida, G. Feke, F. Mori, T. Nagaoka, N. Fujio, H. Ogasawara, S. Konno, and J. Mcmeel, "Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument," Am. J. Ophthalmology 135, 356-361 (2003).

Br. J. Ophthalmol.

E. Dienstbier, J. Balik, and H. Kafka, "A contribution to the theory of the vascular theory of glaucoma," Br. J. Ophthalmol. 34, 47-58 (1950).
[CrossRef] [PubMed]

Ophthalmology

J. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. Hee, J. Wilkins, J. Coker, C. Puliafito, J. Fujimoto, and E. Swanson, "Reproducibility of nerve fiber layer thickness measurements using optical coherence Tomography," Ophthalmology 103, 1889-1898 (1996).

E. Blumenthal, J. Williams, R Weinreb, C Girkin, C Berry, "Reproducibility of Nerve Fiber Layer Thickness Measurements by use of Optical Coherence Tomography," Ophthalmology 107, 2278-2282 (2000).
[CrossRef]

V. Guedes, J. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, C. Mattox, "Optical Coherence Tomography Measurement of Macular and Nerve Fiber Layer Thickness in Normal and Glaucomatous Human Eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef]

Opt. Commun.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. Cobbold, B. Wilson, and I. Vitkin, " Improved phase resolved optical Doppler tomography using the kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-214 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

H. Wehbe, M Ruggeri, S Jiao, G Gregori, C. Puliafito, "Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography," Proc. SPIE,  6429, 64290D (2007).
[CrossRef]

Prog. Retinal Res.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, "The impact of ocular blood flow in glaucoma," Prog. Retinal Res. 21, 359-393 (2002).
[CrossRef]

Other

R. Allingham, K. Damji, S. Freedman, S. Moroi, G. Shafranov, and M. Shields, Shields’ textbook of Glaucoma, Fifth Edition, (Lippincott Williams & Wilkins, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a). Circular scan pattern centered on the optic disk. The black circles represent the normal density scans (1024 A-lines); the white circle represent the high density scan (8192 A-lines). (b)Arc scan pattern. Scans 1,2,3,62,63 are used to calculate the Doppler angle. Scan 64 is used for alignment. Scans 4-61 were scanning the same area.

Fig. 2.
Fig. 2.

(a). virtual B-scan extracted from the 3D data at the location of the reference scan. The red line shows the segmented ILM (inner limiting membrane) that is used for alignment. (b) The reference scan image.

Fig. 3.
Fig. 3.

Improved blood vessel profile using blood vessel shadowgraph. (a) Original B-scan image. (b) The B-scan image after the surface layer was removed. The calculated fundus reflection distribution corresponding to the B-scan and the fundus shadowgraph were superimposed on the images.

Fig. 4.
Fig. 4.

Depth coordinate detection by using a circular window averaging. (a) The original ODT image of an arc scan; (b) The blood vessel center was marked by visual measurement; (c) Averaging curve along the direction of the A-line passing through the center of the blood vessel with a diameter of 60 pixels. Notice the position of the peak corresponds with the depth position of the center of the blood vessel.

Fig. 5.
Fig. 5.

Illustration of the procedure for calculation of the Doppler angle and the blood flow.

Fig. 6.
Fig. 6.

Color fundus photograph of a normal human eye and the corresponding OCT fundus image generated from the circular scans around the optic disc.

Fig. 7.
Fig. 7.

(a). OCT image of a high density circular scan (8192 A-lines) around the optic disc of a normal human eye; (b). The OCT image after removal of the surface layers; (c). The original shadowgraph; (d). The shadowgraph after background correction and normalization; (e). the shadowgraph after thresholding; (f). Recognized blood vessel centers and boundaries are marked on the OCT image; (g). The ODT image for the same OCT scan; (h). Magnified view of the region marked in (g). where the calculated blood vessel centers are marked.

Fig. 8.
Fig. 8.

(a). the detected vessel location and boundaries in an arc scan image; (b) comparing the automatically detected vessel center (solid circle) and the visually detected center (open circle) on the ODT image of a vessel.

Fig. 9.
Fig. 9.

The detected x, y, and z coordinates of the center of a blood vessel versus the scan radius r. Linear fitting were used for compensating variations of the x and y coordinates. The coordinates at r=1.73 mm are the average of the results of the 58 repeated arc scans. (a) x versus r; (b) y versus r; (c) z versus r before and after eye movement compensation. Also shown in (c) is the range of the z coordinates of the vessel center for the 58 repeated arc scans.

Fig. 10
Fig. 10

The test result of an artery for a normal human eye. (a) The fundus photograph, the cross sectional OCT image at the position marked on the fundus photograph, and the ODT image. (b) The calculated absolute flow velocity averaged across the vessel area.

Fig. 11.
Fig. 11.

The test result of a vein for a normal human eye. (a) The fundus photograph, the OCT cross sectional image at the position marked on the fundus photograph, and the ODT image. (b) The calculated absolute flow velocity averaged across the vessel area.

Fig. 12.
Fig. 12.

Color fundus photograph of a normal human eye with markers indicating the location of the scan areas. Vessel 1 corresponds to the vein before bifurcation, while vessels 2 and 3 represent the vessel branches after bifurcation.

Tables (1)

Tables Icon

Table 1. Calculated parameters of the vessels shown in Fig. 12.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f d = 2 n v a λ 0 cos θ ,
Γ i + 1 ( t ) Γ i * ( t ) = A ( t ) e i [ φ i + 1 ( t ) φ i ( t ) ]
v p = Δ φ i λ 0 f A line 4 πn ,
π Δ φ i π , λ 0 f A line 4 n v p λ 0 f A line 4 n ,
Δ φ bulk = max [ H ( Δ φ i ) ] , π < H ( Δ φ i ) < π
cos θ = Δz Δ x 2 + Δ y 2 + Δ z 2 ,
d ( cos θ ) = Δ x Δ zd ( Δ x ) Δ y Δ zd ( Δ y ) + ( Δ x 2 + Δ y 2 ) d ( Δ z ) ( Δ x 2 + Δ y 2 + Δ z 2 ) 3 2 .
R v ̅ a πd 2 4 .

Metrics