Abstract

We have fabricated 1240nm GaInNAs high-power semiconductor laser diodes. In pulsed operation 1000 μm × 100 μm laser diodes show record low threshold current densities of 174 Acm-2. Continuous wave output powers exceeding 4.6 Watts at room temperature and 6.2 Watts at a heatsink temperature of -5 °C are obtained from 1300 μm × 200 μm devices. The maximum wallplug efficiency of the device exceeds 40 % and the internal quantum efficiency reaches 0.89. Preliminary lifetime tests were performed for about 1000 h and show stable high-power operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).
    [CrossRef]
  2. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
    [CrossRef]
  3. M. Fischer, M. Reinhardt, and A. Forchel, "GaInAsN/GaAs laser diodes operating at 1.52 µm," Electron. Lett. 36, 1208-1209 (2000).
    [CrossRef]
  4. J. S. Harris, "GaInNAs long-wavelength lasers: progress and challenges," Semicond. Sci. Tech. 17, 880-891 (2002).
    [CrossRef]
  5. M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
    [CrossRef]
  6. J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
    [CrossRef]
  7. D. A. Livshits, A. Y. Egorov, and H. Riechert, "8W continous wave operation of InGaAsN lasers at 1.3 µm," Electron. Lett. 36, 1381-1382 (2000).
    [CrossRef]
  8. E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
    [CrossRef]
  9. K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
    [CrossRef]
  10. M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
    [CrossRef]
  11. S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
    [CrossRef]
  12. T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
    [CrossRef]
  13. A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
    [CrossRef]
  14. W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
    [CrossRef]

2007 (2)

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

2006 (3)

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

2005 (2)

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

2003 (1)

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

2002 (2)

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

J. S. Harris, "GaInNAs long-wavelength lasers: progress and challenges," Semicond. Sci. Tech. 17, 880-891 (2002).
[CrossRef]

2000 (2)

M. Fischer, M. Reinhardt, and A. Forchel, "GaInAsN/GaAs laser diodes operating at 1.52 µm," Electron. Lett. 36, 1208-1209 (2000).
[CrossRef]

D. A. Livshits, A. Y. Egorov, and H. Riechert, "8W continous wave operation of InGaAsN lasers at 1.3 µm," Electron. Lett. 36, 1381-1382 (2000).
[CrossRef]

1996 (1)

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

1972 (1)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).
[CrossRef]

Adachi, K.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

Airey, R.

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

Antohe, S.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Aoki, M.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

Bae, H. P.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Bank, S. R.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Bugge, F.

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

Chaix, C.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Cimpoca, G.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Dhaka, V. D. S.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Egorov, A. Y.

D. A. Livshits, A. Y. Egorov, and H. Riechert, "8W continous wave operation of InGaAsN lasers at 1.3 µm," Electron. Lett. 36, 1381-1382 (2000).
[CrossRef]

Erbert, G.

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

Esquivias, I.

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

Fischer, M.

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

M. Fischer, M. Reinhardt, and A. Forchel, "GaInAsN/GaAs laser diodes operating at 1.52 µm," Electron. Lett. 36, 1208-1209 (2000).
[CrossRef]

Forchel, A.

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

M. Fischer, M. Reinhardt, and A. Forchel, "GaInAsN/GaAs laser diodes operating at 1.52 µm," Electron. Lett. 36, 1208-1209 (2000).
[CrossRef]

Goddard, L. L.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Gollub, D.

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

Gugov, T.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Harris, J. S.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

J. S. Harris, "GaInNAs long-wavelength lasers: progress and challenges," Semicond. Sci. Tech. 17, 880-891 (2002).
[CrossRef]

Hopkinson, M.

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

Hulsewede, R.

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

Ippen, E. P.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).
[CrossRef]

Jackrel, D.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Jin, C. Y.

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

Kaiser, W.

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

Kamp, M.

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

Kasai, J.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

Kitatani, I.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

Kitatani, T.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Kondow, M.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Kovsh, A. R.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Kudrawiec, R.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Larrson, A.

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

Ledentsov, N. N.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Liu, H. Y.

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

Livshits, D. A.

D. A. Livshits, A. Y. Egorov, and H. Riechert, "8W continous wave operation of InGaAsN lasers at 1.3 µm," Electron. Lett. 36, 1381-1382 (2000).
[CrossRef]

Lordi, V.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Maximov, M. V.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Mikhrin, S. S.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Nakahara, K.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

Navaretti, P.

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

Niwa, A.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Novikov, I. I.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Odriozola, H.

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

Pavelescu, E. M.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Pessa, M.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Pickett, E. R.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Reinhardt, M.

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

M. Fischer, M. Reinhardt, and A. Forchel, "GaInAsN/GaAs laser diodes operating at 1.52 µm," Electron. Lett. 36, 1208-1209 (2000).
[CrossRef]

Reithmaier, J. P.

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

Riechert, H.

D. A. Livshits, A. Y. Egorov, and H. Riechert, "8W continous wave operation of InGaAsN lasers at 1.3 µm," Electron. Lett. 36, 1381-1382 (2000).
[CrossRef]

Saarinen, K.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Sadeghi, M.

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

Sarmiento, T.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Sharma, T. K.

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

Shernyakov, Yu. M

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Slotte, J.

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

Stolen, R. H.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).
[CrossRef]

Tsuchiya, I.

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

Uomi, K.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Ustinov, V. M.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Wang, S. M

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

Wang, X. D.

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

Watahiki, S.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Wei, Y. Q.

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

Weyers, M.

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

Wilk, A.

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

Wistey, M. A.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Yazawa, Y.

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Yuen, H. B.

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Zhao, Q. X.

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

Zorn, M.

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).
[CrossRef]

W. Kaiser, J. P. Reithmaier, A. Forchel, H. Odriozola, and I. Esquivias, "Theoretical and experimental investigations on temperature induced wavelength shift of tapered laser diodes based on InGaAs/GaAs quantum dots," Appl. Phys. Lett. 91, 051126 (2007).
[CrossRef]

Electron. Lett. (4)

K. Adachi, K. Nakahara, J. Kasai, I. Kitatani, I. Tsuchiya, M. Aoki, and M. Kondow, "Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3 µm," Electron. Lett. 42, 1354-1355 (2006).
[CrossRef]

M. Hopkinson, C. Y. Jin, H. Y. Liu, P. Navaretti, and R. Airey, "1.34 µm GaInNAs quantum well lasers with low room-temperature threshold current density," Electron. Lett. 42, 923-924 (2006).
[CrossRef]

M. Fischer, M. Reinhardt, and A. Forchel, "GaInAsN/GaAs laser diodes operating at 1.52 µm," Electron. Lett. 36, 1208-1209 (2000).
[CrossRef]

D. A. Livshits, A. Y. Egorov, and H. Riechert, "8W continous wave operation of InGaAsN lasers at 1.3 µm," Electron. Lett. 36, 1381-1382 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. K. Sharma, M. Zorn, F. Bugge, R. Hulsewede, G. Erbert, and M. Weyers, "High-power highly strained InGaAs quantum-well lasers operating at 1.2 µm," IEEE Photon. Technol. Lett. 14, 887-889 (2002).
[CrossRef]

J. Cryst. Growth (4)

A. Wilk, A. R. Kovsh, S. S. Mikhrin, C. Chaix, I. I. Novikov, M. V. Maximov, Yu. M Shernyakov, V. M. Ustinov, and N. N. Ledentsov, "High-Power 1.3 µm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system," J. Cryst. Growth 278, 335-341 (2005).
[CrossRef]

S. M Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larrson, "Very low threshold current density 1.3µm GaInNAs single-quantum well lasers grown by molecular beam epitaxy," J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

E. M. Pavelescu, J. Slotte, V. D. S. Dhaka, K. Saarinen, S. Antohe, G. Cimpoca, and M. Pessa, "On the optical properties of quantum well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy," J. Cryst. Growth 297, 33-37 (2006).
[CrossRef]

M. Fischer, D. Gollub, M. Reinhardt, M. Kamp, and A. Forchel, "GaInNAs for GaAs based lasers for the 1.3 to 1.5 µm range," J. Cryst. Growth 251, 353-359 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, "GaInNAs: A novel material for longwavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys. 35, 1273-1275 (1996).
[CrossRef]

Phys. Status Solidi B (1)

J. S. Harris, R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, D. Jackrel, E. R. Pickett, T. Sarmiento, L. L. Goddard, V. Lordi, and T. Gugov, "Development of GaInNAsSb alloys: Growth, band structure, optical properties and applications," Phys. Status Solidi B 244, 2707-2729 (2007).
[CrossRef]

Semicond. Sci. Tech. (1)

J. S. Harris, "GaInNAs long-wavelength lasers: progress and challenges," Semicond. Sci. Tech. 17, 880-891 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Light output versus drive current characteristics of a 1000 μm × 100 μm BA device in pulsed operation at RT. The inset shows the corresponding spectrum recorded above threshold in pulsed operation.

Fig. 2.
Fig. 2.

Light output and voltage versus drive current characteristics curve of an epi-side down mounted 1300μm × 200μm BA device under cw operation at RT. The inset shows the spectrum at I = 1.6∙Ith .

Fig. 3.
Fig. 3.

Light output versus drive current characteristics curve of the 1300 μm × 200 μm BA device under cw operation at -5 °C

Fig. 4.
Fig. 4.

Wallplug efficiency of a 1300μm × 200 μm BA device under cw operation at RT

Fig. 5.
Fig. 5.

Cavity length dependence of the reciprocal external differential efficiency for determination of internal device parameters derived from BA lasers with a stripe width of 100 μm under pulsed operation

Fig. 6.
Fig. 6.

Total output power versus operating time of a GaInNAs high-power BA device under cw operation at RT. The discontinuity at about 110h is due to an intentional increase of the drive current.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 η e = 1 η i ( 1 + α i L ln 1 R )

Metrics