Abstract

Long-wave infrared (LWIR) polarimetric signatures provide the potential for day-night detection and identification of objects in remotely sensed imagery. The source of optical energy in the LWIR is usually due to thermal emission from the object in question, which makes the signature dependent primarily on the target and not on the external environment. In this paper we explore the impact of thermal equilibrium and the temperature of (unseen) background objects on LWIR polarimetric signatures. We demonstrate that an object can completely lose its polarization signature when it is in thermal equilibrium with its optical background, even if it has thermal contrast with the objects that appear behind it in the image.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. H. Goldstein, D. B. Chenault, and J. A. Shaw, "Review of Passive Imaging Polarimetry for Remote Sensing Applications," Appl. Opt. 45, 5453 - 5469 (2006).
    [CrossRef] [PubMed]
  2. O. Sandus, "A review of emission polarization," Appl. Opt. 4, 1634-1642 (1965).
    [CrossRef]
  3. T. J. Rogne, "Passive detection using polarized components of infrared signatures," in Proceedings of SPIE vol. 1317: Polarimetry: Radar, infrared visible, ultraviolet and X-ray, R. A. Chipman and J. W. Morris, eds., pp. 242 - 251 (SPIE, Bellingham, WA, 1990).
  4. R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. I." Phys. Rev. 3, 81-99 (1895).
  5. R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. II." Phys. Rev. 3, 177-192 (1895).
  6. D. L. Jordan, G. D. Lewis, and E. ‘Jakeman, "Emission polarization of roughened glass and aluminum surfaces," Appl. Opt. 35, 3583 - 3590 (1996).
    [CrossRef] [PubMed]
  7. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977).
  8. S. Chandresekhar, Radiative Transfer (Dover, New York, 1960).
  9. J. A. Shaw, "Degree of linear polarization in spectral radiances from water-viewing infrared polarimeters," Appl. Opt. 38, 3157-3165 (1999).
    [CrossRef]
  10. J. K. Boger, J. S. Tyo, B. M. Ratliff, M. P. Fetrow, W. Black, and R. Kumar, "Modeling precision and accuracy of a LWIR microgrid array imaging polarimeter," in Proc. SPIE vol. 5158: Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., p. 58880U (SPIE, Bellingham, WA, 2005).
  11. D. Bowers, J. K. Boger, L. D. Wellens, W. T. Black, S. E. Ortega, B. M. Ratliff, M. P. Fetrow, J. E. Hubbs, and J. S. Tyo, "Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays," in Proc. SPIE vol. 6240: Polarization: Measurement, Analysis, and Remote Sensing VII, D. H. Goldstein and D. B. Chenault, eds., p. 6240OF (SPIE, Bellingham, WA, 2006).
  12. A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2, 566 - 576 (2002).
    [CrossRef]
  13. B. M. Ratliff, J. K. Boger, M. P. Fetrow, J. S. Tyo, andW. T. Black, "Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters," in Proc. SPIE vol. 6240: Polarization: Measurement, Analysis, and Remote Sensing VII, D. H. Goldstein and D. B. Chenault, eds., p. 6240OE (SPIE, Bellingham, WA, 2006).
  14. R. A. Chipman, "Polarimetry," in Handbook of Optics, M. Bass, ed., vol. 2, chap. 22 (McGraw-Hill, 1995).
  15. J. E. Hubbs, M. E. Gramer, D. Maestas-Jepson, G. A. Dole, M. P. Fetrow, D. L. Bowers, J. K. Boger, and E. Atkins, "Measurement of the radiometric and polarization characteristics of a microgrid polarizer infrared focal plane array," in Proceedings of SPIE vol. and 6295: Infrared Detectors and Focal Plane Arrays VIII, E. L. Dereniak and R. E. Sampson, eds., p. 62950C (SPIE, Bellingham, WA, 2006).
  16. J. K. Boger, J. S. Tyo, B. M. Ratliff, M. P. Fetrow,W. Black, and R. Kumar, "Modeling precision and acuracy of a LWIR microgrid array imaging polarimeter," in Proc. SPIE vol. 5888: Polarization Science and Remote Sensing II, J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2005). In Press.
  17. G. D. Bernard and R. Wehner, "Functional similarities between polarization vision and color vision," Vision Res. 17, 1019-1028 (1977).
    [CrossRef] [PubMed]
  18. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994).
    [CrossRef]
  19. J. S. Tyo, E. N. Pugh, and N. Engheta, "Colorimetric Representations For Use With Polarization-Difference Imaging Of Objects In Scattering Media," J. Opt. Soc. Am. A 15, 367-374 (1998).
    [CrossRef]

2006 (1)

2002 (1)

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2, 566 - 576 (2002).
[CrossRef]

1999 (1)

1998 (1)

1996 (1)

1994 (1)

1977 (1)

G. D. Bernard and R. Wehner, "Functional similarities between polarization vision and color vision," Vision Res. 17, 1019-1028 (1977).
[CrossRef] [PubMed]

1965 (1)

1895 (2)

R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. I." Phys. Rev. 3, 81-99 (1895).

R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. II." Phys. Rev. 3, 177-192 (1895).

‘Jakeman, E.

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2, 566 - 576 (2002).
[CrossRef]

Bernard, G. D.

G. D. Bernard and R. Wehner, "Functional similarities between polarization vision and color vision," Vision Res. 17, 1019-1028 (1977).
[CrossRef] [PubMed]

Chenault, D. B.

Engheta, N.

Goldstein, D. H.

Jordan, D. L.

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2, 566 - 576 (2002).
[CrossRef]

Lewis, G. D.

Millikan, R. A.

R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. I." Phys. Rev. 3, 81-99 (1895).

R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. II." Phys. Rev. 3, 177-192 (1895).

Pugh, E. N.

Sandus, O.

Shaw, J. A.

Tyo, J. S.

Wehner, R.

G. D. Bernard and R. Wehner, "Functional similarities between polarization vision and color vision," Vision Res. 17, 1019-1028 (1977).
[CrossRef] [PubMed]

Wolff, L. B.

Appl. Opt. (4)

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2, 566 - 576 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

Phys. Rev. (2)

R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. I." Phys. Rev. 3, 81-99 (1895).

R. A. Millikan, "A study of the polarization of the light emitted by incandescnet solid and liquid surfaces. II." Phys. Rev. 3, 177-192 (1895).

Vision Res. (1)

G. D. Bernard and R. Wehner, "Functional similarities between polarization vision and color vision," Vision Res. 17, 1019-1028 (1977).
[CrossRef] [PubMed]

Other (9)

B. M. Ratliff, J. K. Boger, M. P. Fetrow, J. S. Tyo, andW. T. Black, "Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters," in Proc. SPIE vol. 6240: Polarization: Measurement, Analysis, and Remote Sensing VII, D. H. Goldstein and D. B. Chenault, eds., p. 6240OE (SPIE, Bellingham, WA, 2006).

R. A. Chipman, "Polarimetry," in Handbook of Optics, M. Bass, ed., vol. 2, chap. 22 (McGraw-Hill, 1995).

J. E. Hubbs, M. E. Gramer, D. Maestas-Jepson, G. A. Dole, M. P. Fetrow, D. L. Bowers, J. K. Boger, and E. Atkins, "Measurement of the radiometric and polarization characteristics of a microgrid polarizer infrared focal plane array," in Proceedings of SPIE vol. and 6295: Infrared Detectors and Focal Plane Arrays VIII, E. L. Dereniak and R. E. Sampson, eds., p. 62950C (SPIE, Bellingham, WA, 2006).

J. K. Boger, J. S. Tyo, B. M. Ratliff, M. P. Fetrow,W. Black, and R. Kumar, "Modeling precision and acuracy of a LWIR microgrid array imaging polarimeter," in Proc. SPIE vol. 5888: Polarization Science and Remote Sensing II, J. A. Shaw and J. S. Tyo, eds. (SPIE, Bellingham, WA, 2005). In Press.

T. J. Rogne, "Passive detection using polarized components of infrared signatures," in Proceedings of SPIE vol. 1317: Polarimetry: Radar, infrared visible, ultraviolet and X-ray, R. A. Chipman and J. W. Morris, eds., pp. 242 - 251 (SPIE, Bellingham, WA, 1990).

J. K. Boger, J. S. Tyo, B. M. Ratliff, M. P. Fetrow, W. Black, and R. Kumar, "Modeling precision and accuracy of a LWIR microgrid array imaging polarimeter," in Proc. SPIE vol. 5158: Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., p. 58880U (SPIE, Bellingham, WA, 2005).

D. Bowers, J. K. Boger, L. D. Wellens, W. T. Black, S. E. Ortega, B. M. Ratliff, M. P. Fetrow, J. E. Hubbs, and J. S. Tyo, "Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays," in Proc. SPIE vol. 6240: Polarization: Measurement, Analysis, and Remote Sensing VII, D. H. Goldstein and D. B. Chenault, eds., p. 6240OF (SPIE, Bellingham, WA, 2006).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977).

S. Chandresekhar, Radiative Transfer (Dover, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometry and coordinates for LWIR emission/reflection from a spherical object.

Fig. 2.
Fig. 2.

Visible digital photo of the gray body sphere used as a test target.

Fig. 3.
Fig. 3.

(a) s 0 image of the heated sphere in the LWIR. (b) s 1 image of the heated sphere in the LWIR.

Fig. 4.
Fig. 4.

Polarimetric image of the sphere reflecting radiation from the human hand. (a) s 0 image. (b) Fused polarimetric image using the mapping in (7).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε s ( θ ) + r s ( θ ) = 1
ε p ( θ ) + r p ( θ ) = 1 ,
L λ ( s ) ( θ ) = P ( T o ) ε s ( θ ) + P ( T b ) r s ( θ ) ,
L λ ( s ) ( θ ) = P ( T o ) ( 1 r s ( θ ) ) + P ( T b ) r s ( θ ) = P ( T o ) + r s ( θ ) ( P ( T b ) P ( ( T o ) )
L λ ( p ) ( θ ) = P ( T o ) ( 1 r p ( θ ) ) + P ( T b ) r p ( θ ) = P ( T o ) + r p ( θ ) ( P ( T b ) P ( ( T o ) ) .
S = s o s 1 s 2 T = L 0 + L 90 L 0 L 90 L 45 L 135 T ,
H = 2 ψ = atan S 2 S 1 ; S = DoLP = s 1 2 + s 2 2 s 0 ; V = s 0 ,

Metrics