Abstract

Characteristics of cladding modes in a photonic crystal fiber (PCF) are numerically analyzed using the plane wave expansion method. The presence of the outer silica ring in the PCF tends to push the optical fields of the cladding modes toward the rim of the PCF, which creates ‘ring modes’ whose fields are tightly confined in the outer ring. The dispersion of the cladding modes are determined mainly by the dispersive property of the holey cladding structure. The optical field patterns of the cladding modes and the beatlengths between the fundamental mode and the cladding modes are also investigated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, A. Ortigosa-Branch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  3. K. Suzuki, H. Kubota, M. Tanaka, M. Fujita, and S. Kawanishi, "Optical properties of a low-loss polarization-maintaining photonic crystal fibers," Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  4. G. Kakarantzas, T. A. Birks, and P. S. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  5. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. S. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000).
    [CrossRef]
  6. H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
    [CrossRef]
  7. S. H. Lee, K. Y. Song, and B. Y. Kim, "Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling," IEEE Photon. Technol. Lett. 17, 2631-2633 (2005).
    [CrossRef]
  8. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton University Press, 1995).
  10. I. K. Hwang, Y. J. Lee, and Y. H. Lee, "Birefringence induced by irregular structure in photonic crystal fiber," Opt. Express 11, 2799-2806 (Nov, 2003).
    [CrossRef] [PubMed]
  11. P. F. Mclsaac, "Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
    [CrossRef]
  12. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express 11, 1310-1321 (2003).
    [CrossRef] [PubMed]
  13. J. C. Knight, T. A. Birks, and P. St. J. Russell, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15, 748-752 (2003).
    [CrossRef]
  14. M. W. Haakestad and H. E. Engan, "Acoustooptic properties of a weakly multimode solid core photonic crystal fiber," J. Lightwave Technol. 24, 838-845 (2006).
    [CrossRef]

2006

2005

S. H. Lee, K. Y. Song, and B. Y. Kim, "Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling," IEEE Photon. Technol. Lett. 17, 2631-2633 (2005).
[CrossRef]

2003

2002

2001

2000

J. C. Knight, T. A. Birks, A. Ortigosa-Branch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. S. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000).
[CrossRef]

1998

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

1997

1975

P. F. Mclsaac, "Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
[CrossRef]

Birks, T. A.

Diez, A.

Engan, H. E.

Fujita, M.

Guobin, R.

Haakestad, M. W.

Hwang, I. K.

Joannopoulos, J. D.

Johnson, S. G.

Kakarantzas, G.

Kawanishi, S.

Kim, B. Y.

S. H. Lee, K. Y. Song, and B. Y. Kim, "Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling," IEEE Photon. Technol. Lett. 17, 2631-2633 (2005).
[CrossRef]

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Kim, H. K.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Kim, H. S.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Knight, J. C.

Kubota, H.

Lee, S. H.

S. H. Lee, K. Y. Song, and B. Y. Kim, "Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling," IEEE Photon. Technol. Lett. 17, 2631-2633 (2005).
[CrossRef]

Lee, Y. H.

Lee, Y. J.

Mangan, B. J.

Mclsaac, P. F.

P. F. Mclsaac, "Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
[CrossRef]

Ortigosa-Branch, A.

J. C. Knight, T. A. Birks, A. Ortigosa-Branch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Park, N.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Reeves, W. H.

Russell, P. S. J.

Russell, P. St. J.

Shuisheng, J.

Shuqin, L.

Song, K. Y.

S. H. Lee, K. Y. Song, and B. Y. Kim, "Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling," IEEE Photon. Technol. Lett. 17, 2631-2633 (2005).
[CrossRef]

Suzuki, K.

Tanaka, M.

Wadsworth, W. J.

J. C. Knight, T. A. Birks, A. Ortigosa-Branch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Yun, S. H.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Zhi, W.

IEEE Photon. Technol. Lett.

J. C. Knight, T. A. Birks, A. Ortigosa-Branch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

S. H. Lee, K. Y. Song, and B. Y. Kim, "Fused bitapered single-mode fiber directional coupler for core and cladding mode coupling," IEEE Photon. Technol. Lett. 17, 2631-2633 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

P. F. Mclsaac, "Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The structure of PCF used in simulation. R: radius of PCF, ʌ: distance between two adjacent holes, d: diameter of hole, L: supercell size.

Fig. 2.
Fig. 2.

(a). The mode effective indices and (b) the Ex field distributions of the lowest 14 cladding modes @ 2R=83.5 λm, μ=1.56 μm.

Fig. 3.
Fig. 3.

The electrical field profiles of two degenerate modes of the first-order symmetric cladding mode @ 2R=83.5 μm, λ=1.56 μm.

Fig. 4.
Fig. 4.

The electrical field profiles of four degenerate modes of the first-order antisymmetric cladding mode @ 2R=83.5 μm, λ=1.56 μm.

Fig. 5.
Fig. 5.

(a). The mode indices and (b) the mode field profiles with x-polarization for the structure of PCF as a function of the outer diameter for antisymmetric modes @ λ=1.56 μm. Here, numbers 1, 2, and 3 denote three different values of the outer diameters (83.5, 97, and 102 μm, respectively).

Fig. 6.
Fig. 6.

(a). The refractive indices of the LP01 core mode and the four LP1x cladding modes, (b) the relative index differences between the effective cladding and the four cladding modes, and (c) beatlengths between the core mode and the four cladding modes @ 2R=84.5 μm. Insets, the intensity distributions of the LP11 mode @ λ=1.08 and 2.34 μm.

Metrics