Abstract

An efficient, tunable Long Period Waveguide Grating (LPWG) filter based on a new hybrid sol-gel material is demonstrated. The LPWG exhibits an attenuation of -22 dB and a high temperature sensitivity of ∼3.3 nm/°C. At room temperature the device shows an almost polarization independent wavelength. We took the advantage of the UV-curable sol-gel materials and used soft lithography to demonstrate a simple approach of integrating two LPWG filters on the same structure. The gratings were fabricated on the top and on the bottom of the same ridge waveguide and operate at communication wavelengths of 1550 and 1310 nm, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Que and C. H. Kam, "Sol-gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane," Opt. Eng. 41, 1733-1737 (2002).
    [CrossRef]
  2. A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, "Thermally stable optical characteristics of sol-gel hybrid material films," Appl. Phys. Lett.  88, 101916.1-101916.3 (2006).
    [CrossRef]
  3. D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
    [CrossRef]
  4. W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
    [CrossRef]
  5. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  6. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, "Long-period fiber-grating-based gain equalizer," Opt. Lett. 21, 336-338 (1996).
    [CrossRef] [PubMed]
  7. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  8. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
    [CrossRef]
  9. H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, "Polymeric long-period waveguide gratings," IEEE Photon. Technol. Lett. 15, 721-723 (2003).
    [CrossRef]
  10. K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
    [CrossRef]
  11. K. P. Lor, Q. Liu, K. S. Chiang, "UV-written long-period gratings on polymer waveguides," Photon. Technol. Lett. 17, 594-596 (2005).
    [CrossRef]
  12. D. J. Kang, J. U. Park, and B. S. Bae, "Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films," Opt. Express. 11, 1144-1148 (2003).
    [CrossRef] [PubMed]
  13. S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
    [CrossRef]
  14. T. H. Nhung, M. C. Truong, T. A. Dao, F. Chaput, A. Brun, N. D. Hung, and J. P. Boilot, "Stable doped hybrid sol-gel materials for solid-state dye laser," Appl. Opt. 42, 2213-2218 (2003).
    [CrossRef] [PubMed]
  15. X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nanofabrication," J. Mater. Chem. 7, 1069-1074 (1997).
    [CrossRef]
  16. M. S. Kwon and S. Y. Shin, "Spectral tailoring of uniform long-period waveguide grating by the cladding thickness control," Opt. Comm. 250, 41-47 (2005).
    [CrossRef]
  17. H. Y. Tang, W. H. Wong, and E. Y. B. Pun, "Long period polymer waveguide grating device with positive temperature sensitivity," Appl. Phys. B. 79, 95-98 (2004).
    [CrossRef]
  18. K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
    [CrossRef]
  19. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
    [CrossRef]
  20. N. K. Chen, D. Y. Hsu, and S. Chi, "Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding," Opt. Lett. 32, 2082-2084 (2007).
    [CrossRef] [PubMed]
  21. L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
    [CrossRef] [PubMed]
  22. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
    [CrossRef]
  23. G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
    [CrossRef]

2007

2005

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

K. P. Lor, Q. Liu, K. S. Chiang, "UV-written long-period gratings on polymer waveguides," Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, "Spectral tailoring of uniform long-period waveguide grating by the cladding thickness control," Opt. Comm. 250, 41-47 (2005).
[CrossRef]

2004

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, "Long period polymer waveguide grating device with positive temperature sensitivity," Appl. Phys. B. 79, 95-98 (2004).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
[CrossRef] [PubMed]

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
[CrossRef]

2003

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, "Polymeric long-period waveguide gratings," IEEE Photon. Technol. Lett. 15, 721-723 (2003).
[CrossRef]

D. J. Kang, J. U. Park, and B. S. Bae, "Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films," Opt. Express. 11, 1144-1148 (2003).
[CrossRef] [PubMed]

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

T. H. Nhung, M. C. Truong, T. A. Dao, F. Chaput, A. Brun, N. D. Hung, and J. P. Boilot, "Stable doped hybrid sol-gel materials for solid-state dye laser," Appl. Opt. 42, 2213-2218 (2003).
[CrossRef] [PubMed]

2002

W. Que and C. H. Kam, "Sol-gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane," Opt. Eng. 41, 1733-1737 (2002).
[CrossRef]

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
[CrossRef]

1999

A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

1997

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nanofabrication," J. Mater. Chem. 7, 1069-1074 (1997).
[CrossRef]

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

1996

Abramov, A.

A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Aubonnet, S.

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

Bae, B.

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

Bae, B. S.

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

D. J. Kang, J. U. Park, and B. S. Bae, "Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films," Opt. Express. 11, 1144-1148 (2003).
[CrossRef] [PubMed]

Barry, H. F.

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

Bayon, J. F.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Bergano, N. S.

Bhatia, V.

V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Boilot, J. P.

Brun, A.

Chan, H. P.

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

Chaput, F.

Chen, N. K.

Chi, S.

Chiang, K. S.

K. P. Lor, Q. Liu, K. S. Chiang, "UV-written long-period gratings on polymer waveguides," Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

Chow, C. K.

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

Chu, Y. M.

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

Dao, T. A.

Davidson, C. R.

Douay, M.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Duhem, O.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Eo, Y. J.

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

Erdogab, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Goodberlet, J. G.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
[CrossRef]

Green, W.

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
[CrossRef] [PubMed]

Hale, A.

A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Hastings, J. T.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
[CrossRef]

Heninot, J. F.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Hsu, D. Y.

Huang, Y.

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
[CrossRef] [PubMed]

G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
[CrossRef]

Hung, N. D.

Judkins, J. B.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, "Long-period fiber-grating-based gain equalizer," Opt. Lett. 21, 336-338 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kam, C. H.

W. Que and C. H. Kam, "Sol-gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane," Opt. Eng. 41, 1733-1737 (2002).
[CrossRef]

Kang, D. J.

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

D. J. Kang, J. U. Park, and B. S. Bae, "Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films," Opt. Express. 11, 1144-1148 (2003).
[CrossRef] [PubMed]

Kim, K. S.

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

Kim, W. S.

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Kwon, M. S.

M. S. Kwon and S. Y. Shin, "Spectral tailoring of uniform long-period waveguide grating by the cladding thickness control," Opt. Comm. 250, 41-47 (2005).
[CrossRef]

Leleu, B.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, "Long-period fiber-grating-based gain equalizer," Opt. Lett. 21, 336-338 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lim, M. H.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
[CrossRef]

Liu, Q.

K. P. Lor, Q. Liu, K. S. Chiang, "UV-written long-period gratings on polymer waveguides," Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

Lor, K. P.

K. P. Lor, Q. Liu, K. S. Chiang, "UV-written long-period gratings on polymer waveguides," Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

MacCraith, B. D.

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

Nhung, T. H.

Paloczi, G. T.

G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
[CrossRef]

Park, J. U.

D. J. Kang, J. U. Park, and B. S. Bae, "Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films," Opt. Express. 11, 1144-1148 (2003).
[CrossRef] [PubMed]

Pedrazzani, J. R.

Phong, P. V.

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

Pun, E. Y. B.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, "Long period polymer waveguide grating device with positive temperature sensitivity," Appl. Phys. B. 79, 95-98 (2004).
[CrossRef]

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, "Polymeric long-period waveguide gratings," IEEE Photon. Technol. Lett. 15, 721-723 (2003).
[CrossRef]

Que, W.

W. Que and C. H. Kam, "Sol-gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane," Opt. Eng. 41, 1733-1737 (2002).
[CrossRef]

Rivoallan, L.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

Sabattie, I. M.

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

Scheuer, J.

G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
[CrossRef]

Shin, S. Y.

M. S. Kwon and S. Y. Shin, "Spectral tailoring of uniform long-period waveguide grating by the cladding thickness control," Opt. Comm. 250, 41-47 (2005).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Smith, H. I.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
[CrossRef]

Strasser, T. A.

A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Tang, H. Y.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, "Long period polymer waveguide grating device with positive temperature sensitivity," Appl. Phys. B. 79, 95-98 (2004).
[CrossRef]

Truong, M. C.

Tsoi, H. C.

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, "Polymeric long-period waveguide gratings," IEEE Photon. Technol. Lett. 15, 721-723 (2003).
[CrossRef]

Vengsarkar, A. M.

von Biiltzingslowen, C.

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

Whitesides, G. M.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nanofabrication," J. Mater. Chem. 7, 1069-1074 (1997).
[CrossRef]

Windeler, R. S.

A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Wong, W. H.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, "Long period polymer waveguide grating device with positive temperature sensitivity," Appl. Phys. B. 79, 95-98 (2004).
[CrossRef]

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, "Polymeric long-period waveguide gratings," IEEE Photon. Technol. Lett. 15, 721-723 (2003).
[CrossRef]

Xia, Y.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nanofabrication," J. Mater. Chem. 7, 1069-1074 (1997).
[CrossRef]

Yariv, A.

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
[CrossRef] [PubMed]

G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
[CrossRef]

Yoon, K. B.

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

Zhao, X. M.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nanofabrication," J. Mater. Chem. 7, 1069-1074 (1997).
[CrossRef]

Zhu, L.

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, "Long period polymer waveguide grating device with positive temperature sensitivity," Appl. Phys. B. 79, 95-98 (2004).
[CrossRef]

Appl. Phys. Lett.

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

Electron. Lett.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, "Long-period fiber grating as a wavelength selective polarization element," Electron. Lett. 33, 616-617 (1997).
[CrossRef]

K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, "Widely tunable polymer long-period waveguide grating with polarization-insensitive resonance wavelength," Electron. Lett. 40, 422-424 (2004).
[CrossRef]

A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, "Widely tunable long-period fiber gratings," Electron. Lett. 35, 81-82 (1999).
[CrossRef]

S. Aubonnet, H. F. Barry, C. von Biiltzingslowen, I. M. Sabattie, and B. D. MacCraith "Photo-patternable optical chemical sensors based on hybrid sol-gel materials," Electron. Lett. 39, 913-914 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun, "Polymeric long-period waveguide gratings," IEEE Photon. Technol. Lett. 15, 721-723 (2003).
[CrossRef]

J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogab, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

J. Mat. Chem.

W. S. Kim, K. S. Kim, Y. J. Eo, K. B. Yoon, and B. Bae, "Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure," J. Mat. Chem. 15, 465-469 (2005).
[CrossRef]

J. Mater. Chem.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nanofabrication," J. Mater. Chem. 7, 1069-1074 (1997).
[CrossRef]

J. Vac. Sci. Technol. B.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phaselocked electron-beam lithography," J. Vac. Sci. Technol. B. 20, 2753-2757 (2002).
[CrossRef]

G. T. Paloczi, Y. Huang, J. Scheuer, and A. Yariv, "Soft lithography molding of polymer integrated optical devices: Reduction of the background residue," J. Vac. Sci. Technol. B. 22, 1764-1769 (2004).
[CrossRef]

Jpn. J Appl. Phys.

K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu and H. P. Chan, "Long-period waveguide gratings," Jpn. J Appl. Phys. 43. 8B, 5690-5696 (2004).
[CrossRef]

Opt. Comm.

M. S. Kwon and S. Y. Shin, "Spectral tailoring of uniform long-period waveguide grating by the cladding thickness control," Opt. Comm. 250, 41-47 (2005).
[CrossRef]

Opt. Eng.

W. Que and C. H. Kam, "Sol-gel fabrication and properties of optical channel waveguides and gratings made from composites of titania and organically modified silane," Opt. Eng. 41, 1733-1737 (2002).
[CrossRef]

Opt. Express.

D. J. Kang, J. U. Park, and B. S. Bae, "Single-step photopatterning of diffraction gratings in highly photosensitive hybrid sol-gel films," Opt. Express. 11, 1144-1148 (2003).
[CrossRef] [PubMed]

L. Zhu, Y. Huang, W. Green, and A. Yariv, "Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide grating by beam writing," Opt. Express. 12, 6372-6376 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Photon. Technol. Lett.

K. P. Lor, Q. Liu, K. S. Chiang, "UV-written long-period gratings on polymer waveguides," Photon. Technol. Lett. 17, 594-596 (2005).
[CrossRef]

Other

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, "Thermally stable optical characteristics of sol-gel hybrid material films," Appl. Phys. Lett.  88, 101916.1-101916.3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Two possible configurations for physically patterned LPWG in optical waveguides: (a) Grating patterned on the top of the core, (b) Grating patterned both in top and bottom of the core.

Fig. 2.
Fig. 2.

Fabrication process of the waveguide with two different periods of grating: (a) Lower cladding coating, (b) Stamping the bottom gratings, (c) Stamping the ridge waveguide with grating on the top side, (d) Upper cladding coating. (Figure not drawn to scale).

Fig. 3.
Fig. 3.

Cross-section of sol-gel channel waveguide and microscopic image of fabricated waveguide: (a) cross section, (b) optical image.

Fig. 4.
Fig. 4.

Normalized transmission spectra for TE and TM polarizations measured when no heat was applied to the substrate: (a) 1550 nm window, (b) 1310 nm window.

Fig. 5.
Fig. 5.

(a) Normalized transmission spectra of LPWG for TE polarization measured at different temperatures, (b) dependence of LPWG transmission peak wavelength on temperature.

Fig. 6.
Fig. 6.

Normalized transmission spectra of structure-II for TE polarization: (a) 1550 nm window, (b) 1310 nm window.

Tables (1)

Tables Icon

Table 1. Comparison between thermal and optical responses of different long period grating

Metrics