Abstract

We introduce a new signal detection method that can effectively suppress the effect of relative intensity noise (RIN) in optical frequency-domain reflectometry or imaging (OFDR/OFDI) schemes to enhance the sensitivity and dynamic range. In this method, spectral interferogram signal is normalized digitally by a spectral reference signal that contains the realtime spectrum and the RIN information of the frequency-swept source. Unlike the conventional balanced detection method that suppresses only additive intensity noises, we found that our proposed scheme removes both the additive and convolutional contributions of the RINs in the final interferogram signals. Experimental demonstrations were performed using a stretched-pulse optical coherence tomography (SP-OCT) system where the high RIN of a supercontinuum source had been a serious drawback. We have experimentally verified the superiority of our proposed scheme in terms of its improved dynamic range in comparison to the balanced detection method. In addition, we have shown that the noise suppression performance is immune to the spectral imbalance characteristics of the optical components used in the system, whereas the common-mode noise rejection of the conventional balanced detection method is influenced by them.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Rosa and A. Gh. Podoleanu, "Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver," Appl. Opt. 43, 4802-4815 (2004).
    [CrossRef] [PubMed]
  2. A. Rollins and J. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  3. A. Gh. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Appl. Opt. 39, 173-182 (2000).
    [CrossRef]
  4. S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
    [CrossRef] [PubMed]
  6. R. Huber, M. Wojtkowski and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  7. R. Huber, DesmondC. Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  8. D. C. Adler, R. Huber and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
    [CrossRef] [PubMed]
  9. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
    [CrossRef] [PubMed]
  10. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  11. R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  12. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  13. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  14. S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14, 11575-11584 (2006).
    [CrossRef] [PubMed]
  15. K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
    [CrossRef]
  16. M. Bashkansky, M. D. Duncan, J. Reintjes and P. R. Battle, "Signal processing for improving field cross-correlation function in optical coherence tomography," Appl. Opt. 37, 8137-8138 (1998).
  17. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable Carrier Generation and Phase-Resolved Digital Data Processing in Optical Coherence Tomography," Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  18. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002).
    [CrossRef]
  19. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
    [CrossRef]
  20. S. Moon and D. Y. Kim, "Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a dispersion-shifted fiber," Opt. Express 14, 270-278 (2006).
    [CrossRef] [PubMed]
  21. M. Kunt, "Chapter 3. The discrete Fourier transformation" in Digital signal processing (Artech House, Inc., Massachusetts, 1986).
  22. Y. Park, T. -J. Ahn, J. -C. Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4597-4616 (2007).
    [CrossRef] [PubMed]

2007

2006

2005

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2001

2000

1999

1998

1991

K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Adler, D. C.

Ahn, T. -J.

Apolonski, A.

Azaña, J.

Bajraszewski, T.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Bashkansky, M.

Battle, P. R.

Bizheva, K.

Bouma, B. E.

Cense, B.

Choma, M.

de Boer, J. F.

Desmond, R.

Drexler, W.

Duncan, M. D.

Fercher, A. F.

Fujimoto, J. G.

Gao, W.

Gh, A.

Gorczynska, I.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Hermann, B.

Hitzenberger, C. K.

Huber, R.

Iftimia, N.

Izatt, J.

Jones, S.

Jonnal, R. S.

Kieffer, J. -C.

Kim, D. Y.

Knight, J. C.

Kobayashi, M.

K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Kowalczyk, A.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Leitgeb, R.

Miller, D. T.

Moon, S.

Nassif, N.

Nelson, J. S.

Noda, J.

K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Olivier, S.

Park, B. H.

Park, Y.

Pierce, M. C.

Povazay, B.

Radzewicz, C.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Reintjes, J.

Rha, J.

Rollins, A.

Rosa, C. C.

Sarunic, M.

Sattmann, H.

Saxer, C. E.

Scherzer, E.

St. Russell, P.

Szkulmowski, M.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Takada, K.

K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Targowski, P.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Tearney, B. J.

Tearney, G. J.

Tripathi, R.

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wasilenwski, W.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Werner, J. S.

Wojtkowski, M.

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Yang, C.

Yukimatsu, K.

K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Yun, S. H.

Zawadzki, R. J.

Zhang, Y.

Appl. Opt.

Appl. Phys. Lett.

K. Takada, K. Yukimatsu, M. Kobayashi and J. Noda, "Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution," Appl. Phys. Lett. 59, 143-145 (1991).
[CrossRef]

Opt. Commun.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilenwski, A. Kowalczyk, C. Radzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005).
[CrossRef]

Opt. Express

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

S. Moon and D. Y. Kim, "Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a dispersion-shifted fiber," Opt. Express 14, 270-278 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14, 11575-11584 (2006).
[CrossRef] [PubMed]

Y. Park, T. -J. Ahn, J. -C. Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4597-4616 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Other

M. Kunt, "Chapter 3. The discrete Fourier transformation" in Digital signal processing (Artech House, Inc., Massachusetts, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of a model OFDI/OFDR system utilizing a frequency-swept light source. Photodetectors, PD1 and PD2, detect the complementary spectral interferograms while PD0 detects the spectral reference signal.

Fig. 2.
Fig. 2.

Schematic diagram of the stretched-pulse OCT (SP-OCT) system used in our experiments.

Fig. 3. (a).
Fig. 3. (a).

Optical spectrum of the stretched-pulse output and (b) the time-to-wavelength conversion map. Only the 200-nm wide wavelength band from 1,165 to 1,365 nm was used in the OCT signal processing.

Fig. 4.
Fig. 4.

Single-shot temporal waveform (i 1 and i 0 ) captured directly by the photodetector (green) and the corresponding retrieved (i 1 =C 10 i 0 ) waveform (black) when there was no reflection from the sample arm i.e. r = 0. The difference, or retrieval error, δ i={ i 1 - i 1 } is also shown (blue). For the measured waveform (green), the foregoing pulse (from 0 to 110 ns) and the trailing pulse (from 130 to 240 ns) correspond to the interferogram signal, i 1 (r=0) and spectral reference signal, i 0 , respectively.

Fig. 5.
Fig. 5.

Modulation frequency-domain power spectra of the raw current signal (i 1), analog-equivalent balanced signal (i 1-α·i 0 ), digital balanced signal (i 1-C 10 ·i 0 ) and dark current of the photodetector. Each power spectrum was obtained by a discrete Fourier transformation and 20 spectra were averaged for each spectrum to evaluate the noise properties accurately.

Fig. 6.
Fig. 6.

(a). Axial PSF of no signal processing for RIN suppression, (b) that of the normalization detection, and (c) that of the digital balanced detection (Balancing II). In each graph, the black bold line corresponds to the measured noise floor.

Fig. 7.
Fig. 7.

(a). PSFs based on single-shot data obtained without averaging for an A-line rate of 3.7 MHz and (b) the SNR/resolution performance along the axial depth, using the normalization detection method. The black bold line in the left-hand side graph corresponds to the noise floor.

Tables (1)

Tables Icon

Table 1. Comparison of noise suppression methods.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i 0 ( t ) = η 0 ( λ ) q ( λ ) · T 0 ( λ ) P ( λ )
i 1 ( t ) = η 1 q [ T r 1 ( λ ) P ( λ ) + T s 1 ( λ ) P ( λ ) r 2 + 2 T r 1 ( λ ) T s 1 ( λ ) · P ( λ ) r cos ( 2 k z 0 + φ ) ]
i 2 ( t ) = η 2 q [ T r 2 ( λ ) P ( λ ) + T s 2 ( λ ) P ( λ ) r 2 2 T r 2 ( λ ) T s 2 ( λ ) · P ( λ ) r cos ( 2 k z 0 + φ ) ]
F { i 1 } k z = η 1 q [ T r 1 · P ˜ ( z ) + T s 1 r 2 · P ˜ ( z ) + 2 T r 1 T s 1 r e · P ˜ ( z ) δ ( z 2 z 0 ) ]
F { i 2 } k z = η 2 q [ T r 2 · P ˜ ( z ) + T s 2 r 2 · P ˜ ( z ) 2 T r 2 T s 2 r e · P ˜ ( z ) δ ( z 2 z 0 ) ]
S balanc c i 1 ( λ ) C 12 ( λ ) · i 2 ( λ ) = i 1 ( η 1 T r 1 η 2 T r 2 ) · i 2 .
S balanc c = η 1 q [ ( T s 1 T r 1 T s 2 T r 2 ) · P r 2 + 2 ( T r 1 T s 1 + T r 1 T s 2 T r 2 ) · Pr cos ( 2 k z 0 + φ ) ]
C 12 ( λ ) = i 1 i 2 r = 0
S balanc sr i 1 ( λ ) C 10 ( λ ) · i 0 ( λ ) = i 1 ( η 1 T r 1 η 0 T r 0 ) · i 0 .
S balanc sr = η 1 q [ T s 1 P r 2 + 2 T r 1 T s 1 · P r cos ( 2 k z 0 + φ ) ]
C 10 ( λ ) = i 1 i 0 r = 0 .
S norn ( 1 C 10 ) · i 1 i 0 = ( η 0 T 0 η 1 T r 1 ) · i 1 i 0 .
S norm = 1 + T s 1 T r 1 r 2 + 2 T s 1 T r 1 · r cos ( 2 k z 0 + φ )
S norm S norm 1 2 T s 1 T r 1 · r cos ( 2 k z 0 + φ )
S norm hybrid ( 1 C 10 ) · Δi i 0

Metrics