Abstract

In this work we present both experimental and theoretical thermal analysis of an electrically pumped hybrid silicon evanescent laser. Measurements of an 850 μm long Fabry-Perot structure show an overall characteristic temperature of 51 °C, an above threshold characteristic temperature of 100 °C, and a thermal impedance of 41.8 °C/W. Finite element analysis of the laser structure predicts a thermal impedance of 43.5 °C/W, which is within 5% of the experimental results. Using the overall characteristic temperature, above threshold characteristic temperature, and the measured thermal impedance, the continuous wave output power vs. current from the laser is simulated and is in good agreement with experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  2. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
    [CrossRef]
  3. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
    [CrossRef]
  4. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
    [CrossRef]
  5. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, (New York, Wiley 1995).
  6. S. Aadachi, "Lattice thermal resistivity of III-V compound alloys," J. Appl. Phys. 54, 1844-1848 (1983).
  7. E. Kapon, Semiconductor Lasers II, Materials and Structures, (San Diego, Academic Press, 2005).
  8. J. Piprik, J. Kenton White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," IEEE J. Quantum Electron. 38, 1253-1259 (2002).
    [CrossRef]

2007 (1)

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

2005 (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef]

2002 (1)

J. Piprik, J. Kenton White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," IEEE J. Quantum Electron. 38, 1253-1259 (2002).
[CrossRef]

1993 (1)

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

1983 (1)

S. Aadachi, "Lattice thermal resistivity of III-V compound alloys," J. Appl. Phys. 54, 1844-1848 (1983).

Aadachi, S.

S. Aadachi, "Lattice thermal resistivity of III-V compound alloys," J. Appl. Phys. 54, 1844-1848 (1983).

Bowers, J. E.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

Cacciato, A

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Campisano, S. U.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef]

Cohen, O.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Fang, A. W.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Jones, R.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Lombardo, S.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

Park, H.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

Piprik, J.

J. Piprik, J. Kenton White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," IEEE J. Quantum Electron. 38, 1253-1259 (2002).
[CrossRef]

Polman, A.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Raday, O.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

van den Hoven, G. N.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A Cacciato, and A. Polman, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Piprik, J. Kenton White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," IEEE J. Quantum Electron. 38, 1253-1259 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. Aadachi, "Lattice thermal resistivity of III-V compound alloys," J. Appl. Phys. 54, 1844-1848 (1983).

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887 (2005).
[CrossRef]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 5, 2315-2322 (2007).
[CrossRef]

Other (2)

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, (New York, Wiley 1995).

E. Kapon, Semiconductor Lasers II, Materials and Structures, (San Diego, Academic Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the wafer bonded hybrid evanescent laser structure. Current is injected in the laser active region from the top p contacts and the side n-contacts.

Fig. 2.
Fig. 2.

Single facet pulsed LI measurements for the 850 μm long FP hybrid laser. Results are shown for stage temperatures between 20 to 45 °C and are in 5 °C steps.

Fig. 3.
Fig. 3.

Natural log of Ith as a function of stage temperature. (b). Natural log of the current required above threshold for an output power of 1 mW .

Fig. 4
Fig. 4

(a). Pulsed measurement results for the shift in lasing wavelength (single FP mode) as a function of stage temperature. The inset contains a laser output spectrum at 15 °C and 30 °C. (b) Results for the shift in lasing wavelength (single FP mode) as a function of dissipated power.

Fig. 5.
Fig. 5.

Detailed description of the device dimensions used in the finite element thermal model.

Fig. 6.
Fig. 6.

(a). Two dimensional temperature profile in the hybrid laser at a bias current of 500 mA. (b). Theoretical predictions for the dissipated electrical power in the various laser sections along with the predicted temperature rise in the active region as a function of contact current.

Fig. 7.
Fig. 7.

(a). CW LI experimental results (solid) and theoretical predictions (dashed) for the FP hybrid laser at backside temperatures between 15 and 45 °C. (b) Residual output power between theory and experiment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I th = I 0 e T T 0
I I th = I P 0 e T T 1
Z T = ( d λ dT ) 1 ( d λ dP )
P out = η i ( α m α i + α m ) ( h ν q ) e ( ( Z r ( P D Pout ) + T ) T 1 ) ( I I 0 e ( ( Z r ( P D Pout ) + T ) T 0 ) )

Metrics