Abstract

This work has been devoted to present and demonstrate a novel approach for the fabrication of micro-structured fiber Bragg gratings (MSFBGs) with enhanced control of the geometric features and thus of the spectral properties of the final device. The investigated structure relies on the localized stripping of the cladding layer in a well defined region in the middle of the grating structure leading to the formation of a defect state in the spectral response. In order to fully explore the versatility of MSFBGs for sensing and communications applications, a technological assessment of the fabrication process aimed to provide high control of the geometrical features is required. To this aim, here, we demonstrate that the optimization of this device is possible by adopting a fabrication process based on polymeric coatings patterned by high resolution UV laser micromachining tools. The function of the polymeric coating is to act as mask for the HF based chemical etching process responsible for the cladding stripping. Whereas, UV laser micromachining provides a valuable method to accurately pattern the polymeric coating and thus obtain a selective stripping along the grating structure. Here, we experimentally demonstrate the potentiality of the proposed approach to realize reliable and cost efficient MSFBGs enabling the prototyping of advanced photonics devices based on this technology.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
    [CrossRef]
  2. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  3. O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
    [CrossRef]
  4. G. P. Agrawal, S. Radic, "Phase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
    [CrossRef]
  5. J. Villatoro, D. Monzòn-Hernandez, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
    [CrossRef]
  6. X. Shu, L. Zhang, I. Bennion, "Sensitivity characteristics of long period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
    [CrossRef]
  7. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  8. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
    [CrossRef]
  9. B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
    [CrossRef]
  10. P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
    [CrossRef]
  11. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  12. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
    [CrossRef]
  13. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
    [CrossRef]
  14. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
    [CrossRef]
  15. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
    [CrossRef]
  16. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
    [CrossRef]
  17. P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
    [CrossRef]
  18. J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
    [CrossRef]
  19. K. Awazu, "Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser," Journal of Non-Crystalline Solids 337, 241-253, (2004)
    [CrossRef]
  20. J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
    [CrossRef]
  21. H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
    [CrossRef]
  22. L. Wei, J. W. Y. Lit, "Phase Shifted Bragg Grating Filters with Symmetrical Structures," J. Lightwave Technol. 15, 1405-1410 (1997).
    [CrossRef]
  23. R. Zengerle, O. Leminger, "Phase shifted Bragg-grating filters with improved transmission characteristics," J. Lightwave Technol. 13, 2354-2358 (1995).
    [CrossRef]

2007 (2)

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

2006 (1)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

2005 (2)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

2004 (5)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

K. Awazu, "Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser," Journal of Non-Crystalline Solids 337, 241-253, (2004)
[CrossRef]

J. Villatoro, D. Monzòn-Hernandez, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

2003 (5)

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
[CrossRef]

H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
[CrossRef]

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

2002 (2)

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

X. Shu, L. Zhang, I. Bennion, "Sensitivity characteristics of long period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

1999 (1)

O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
[CrossRef]

1997 (3)

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

L. Wei, J. W. Y. Lit, "Phase Shifted Bragg Grating Filters with Symmetrical Structures," J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

1995 (1)

R. Zengerle, O. Leminger, "Phase shifted Bragg-grating filters with improved transmission characteristics," J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

1994 (1)

G. P. Agrawal, S. Radic, "Phase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Acharya, B. R.

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, S. Radic, "Phase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Almeida, V. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Awazu, K.

K. Awazu, "Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser," Journal of Non-Crystalline Solids 337, 241-253, (2004)
[CrossRef]

Baldwin, K.

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

Barrios, C. A.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Bennion, I.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

Callender, C. L.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Campopiano, S.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

Chan, K.

J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
[CrossRef]

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Cusano, A.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

Cutolo, A.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

DaCosta, A.

O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
[CrossRef]

Day, M.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Dier, P. E.

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Ding, J.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Dolinski, M.

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Douay, M.

O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
[CrossRef]

Duhem, O.

O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
[CrossRef]

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

Ersoz, M.

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Fletcher, P. D. I.

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Giles, C. R.

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Giordano, M.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

Henninot, J. F.

O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
[CrossRef]

Huang, C. C.

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

Iadicicco, A.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

Jiang, J.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Judkins, J. B.

Kerbage, C.

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

Krupenkin, T.

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

Kuiken, H. K.

H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
[CrossRef]

Lee, B.

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Leminger, O.

R. Zengerle, O. Leminger, "Phase shifted Bragg-grating filters with improved transmission characteristics," J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Lipson, M.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Lit, J. W. Y.

L. Wei, J. W. Y. Lit, "Phase Shifted Bragg Grating Filters with Symmetrical Structures," J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Mach, P.

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

Maswadi, S. M.

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Mihailov, S. J.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Monzòn-Hernandez, D.

J. Villatoro, D. Monzòn-Hernandez, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

Moon Sin, K.

J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
[CrossRef]

Noad, J. P.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Paladino, D.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

Panepucci, R. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Paunov, V. N.

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Radic, S.

G. P. Agrawal, S. Radic, "Phase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Ramachandran, S.

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

Rogers, J. A.

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

Schmidt, B. S.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

Shu, X.

Shui Lau, K.

J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
[CrossRef]

Slusher, R. E.

Stark, J. B.

Talavera, D.

J. Villatoro, D. Monzòn-Hernandez, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

Vengsarkar, A. M.

Villatoro, J.

J. Villatoro, D. Monzòn-Hernandez, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

Walker, R. B.

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

Walton, C. D.

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Wang, Z.

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

Wei, L.

L. Wei, J. W. Y. Lit, "Phase Shifted Bragg Grating Filters with Symmetrical Structures," J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

Windeler, R. S.

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

Yip, J.

J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
[CrossRef]

Zengerle, R.

R. Zengerle, O. Leminger, "Phase shifted Bragg-grating filters with improved transmission characteristics," J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Zhang, L.

Appl. Phys. A - Materials Science & Processing (1)

P. E. Dier, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, V. N. Paunov, "157-nm laser micromachining of N-BK7 glass and replication for microcontact printing," Appl. Phys. A - Materials Science & Processing 77, 391-394 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, "Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics," Appl. Phys. Lett. 83, 4912 (2003).
[CrossRef]

P. Mach, C. Kerbage, M. Dolinski, K. Baldwin, R. S. Windeler, B. J. Eggleton, J. A. Rogers, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294 (2002).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, B. J. Eggleton, "Compact resonant integrated microfluidic refractometers," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Electron. Lett. (3)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Micro-Structured Fiber Bragg Gratings: Analysis and Fabrication," Electron. Lett. 41, 466-468 (2005).
[CrossRef]

O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, "Long period copper-coated grating as electrically tunable wavelength-selective filter," Electron. Lett. 35, 1014-1016 (1999).
[CrossRef]

J. Villatoro, D. Monzòn-Hernandez, D. Talavera, "High resolution refractive index sensing with cladded multimode tapered optical fibre," Electron. Lett. 40, 106-107 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, M. Lipson, "Compact Silicon Tunable Fabry-Pérot Resonator With Low Power Consumption," IEEE Photon. Technol. Lett. 16, 506-508 (2004).
[CrossRef]

G. P. Agrawal, S. Radic, "Phase-Shift Fiber Bragg Gratings and their Application for Wavelength Demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker, S. J. Mihailov, J. Ding, M. Day, "All-Polymer Photonic Devices Using Excimer Laser Micromachining," IEEE Photon. Technol. Lett. 16, 509-511 (2004).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, "Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photon. Technol. Lett. 16, 149-1151 (2004).
[CrossRef]

J. Eng. Math. (1)

H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003).
[CrossRef]

J. Lightwave Technol. (4)

L. Wei, J. W. Y. Lit, "Phase Shifted Bragg Grating Filters with Symmetrical Structures," J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

R. Zengerle, O. Leminger, "Phase shifted Bragg-grating filters with improved transmission characteristics," J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

X. Shu, L. Zhang, I. Bennion, "Sensitivity characteristics of long period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Journal of Non-Crystalline Solids (1)

K. Awazu, "Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser," Journal of Non-Crystalline Solids 337, 241-253, (2004)
[CrossRef]

Mat Res Innovat (1)

J. Yip, K. Chan, K. Moon Sin, K. Shui Lau, "Comprehensive study of pulsed UV-laser modified polyamide fibers," Mat Res Innovat 7, 302-307, (2003)
[CrossRef]

Opt. Fiber Technol. (3)

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part I: Spectral Characteristics," Opt. Fiber Technol. 13, 281-290 (2007).
[CrossRef]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, M. Giordano, "Micro-Structured Fiber Bragg Gratings Part II: Towards Advanced Photonic Devices," Opt. Fiber Technol. 13, 291-301 (2007).
[CrossRef]

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Quarz molds of the recoater machine; (b) Schematic diagram of the uniformly coated FBG.

Fig. 2.
Fig. 2.

(a) Rotative stage of the UV laser micromachining system; (b) Schematic diagram a micro-structured polymeric coating.

Fig. 3.
Fig. 3.

(a) Holder for etching of the grating with micro-structured polyamide coating; (b) Schematic diagram of the cladding layer stripping along the micro-machined region.

Fig. 4.
Fig. 4.

Stereo-microscopy images of (a) bare and (b) coated FBG.

Fig. 5.
Fig. 5.

Grating with micro-machined polyamide coating with LPOL=180 μm

Fig. 6.
Fig. 6.

Etching process monitoring: (a) Spectral response of the grating during the etching process; (b) Defect state wavelength versus the etching time.

Fig. 7.
Fig. 7.

Comparison between unperturbed FBG and MSFBG spectrum in air.

Fig. 8.
Fig. 8.

(a) Optical photogram of the etched region forming the MSFBG: (b) Schema of real and ideal profiles.

Fig. 9.
Fig. 9.

Dependence of MSFBG on the SRI: (a) spectral response for several SRI; (b) Defect state wavelength shift versus SRI.

Fig. 10.
Fig. 10.

Sensitivity of the defect state central wavelength versus SRI.

Metrics