Abstract

We have measured local electric field vectors of local polarizaton on the nanoscale using gold nanoparticle functionalized tips as local field scatterers. In our experiments, the local field induces a dipole-moment in the gold nanoparticle functionalized tip, which then radiates into the far-field, transferring the full information about the local electric field from the near into the far field. The polarization characteristics of the scattered fields are analyzed using a conventional ellipsometry method. The tip dependent scattering function- the polarizability tensor- is fully determined by far field scattering measurements. Once the polarizability tensor for each tip is correctly accounted for in the data analysis, our results show that the finally determined local field polarization vectors are essentially independent of the tip shape.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
    [CrossRef]
  2. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44,651-653 (1984). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000044000007000651000001&idtype=cvips&gifs=yes
    [CrossRef]
  3. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
    [CrossRef]
  4. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65,1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
    [CrossRef]
  5. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19159-161 (1994).
    [CrossRef] [PubMed]
  6. K. G. Lee, H. W. Kihm, J. E. Kihm,  et al., "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007). http://www.nature.com/nphoton/journal/v1/n1/abs/nphoton.2006.37.html
    [CrossRef]
  7. H. Chew, D. -S. Wang, and M. Kerker, "Elastic scattering of evanescent electromagnetic waves," Appl. Opt. 18,2679 (1979).
    [CrossRef] [PubMed]
  8. G. Videen, "Light scattering from a sphere on or near a surface," J. Opt. Soc. Am. A. 8,483 (1991).
    [CrossRef]
  9. D. Ganic, X. Gan, and M. Gu, "Parametric study of three-dimensional near-field Mie scattering by dielectric particles," Opt. Commun. 216,1-10 (2003).
    [CrossRef]
  10. D. E. Aspnes, "Foulier transformation detection system for rotating-analyzer ellipsometers," Opt. Commun. 8, 222-225 (1973).
    [CrossRef]
  11. P. S. Hauge and F. H. Dill, "Design and operation of ETA, and Automated Ellipsometer," IBM J. Res. Develop. 17, 472-489 (1973). http://domino.watson.ibm.com/tchjr/journalindex.nsf/0b9bc46ed06cbac1852565e6006fe1a0/47d82e1ff4acd49585256bfa006841c4?OpenDocument
    [CrossRef]
  12. R. Greef, "An automatic ellipsometer for use in electrochemical investigations," Rev. Sci. Instrum. 41, 532-538 (1970). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000041000004000532000001&idtype=cvips&gifs=yes
    [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics - 7th ed. p.25 Eq. 12 (Cambridge University Press, Cambridge, England, 1999).
    [PubMed]
  14. H. F. Hazebroek, and A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instru. 6,822-826 (1973). http://www.iop.org/EJ/abstract/0022-3735/6/9/013
    [CrossRef]
  15. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
    [CrossRef]
  16. R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
    [CrossRef]
  17. R. M. A. Azzam, "Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light," Optica Acta 29, 685-689 (1982). http://www.informaworld.com/smpp/content~content=a713820903~db=all
    [CrossRef]
  18. R. M. A. Azzam, "Arrangement of four photodetectors for measuring the state of polarization of light," Opt. Lett. 10,309-311 (1985).
    [CrossRef] [PubMed]
  19. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
    [CrossRef] [PubMed]
  20. Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem.B 110,19804-19804 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
    [CrossRef] [PubMed]
  21. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4,2309-2315 (2004). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2004/4/i12/abs/nl048694n.html
    [CrossRef]
  22. P. C. Gasson, Geometry of Spatial Forms-Ch. 8 (John Wiley & Sons, New York, USA, 1983).
  23. J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95,203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
    [CrossRef] [PubMed]

2006 (1)

Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem.B 110,19804-19804 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

2005 (1)

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95,203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

2004 (2)

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4,2309-2315 (2004). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2004/4/i12/abs/nl048694n.html
[CrossRef]

R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
[CrossRef]

2003 (2)

D. Ganic, X. Gan, and M. Gu, "Parametric study of three-dimensional near-field Mie scattering by dielectric particles," Opt. Commun. 216,1-10 (2003).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

2001 (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

1994 (2)

1992 (1)

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

1991 (1)

G. Videen, "Light scattering from a sphere on or near a surface," J. Opt. Soc. Am. A. 8,483 (1991).
[CrossRef]

1985 (1)

1984 (2)

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44,651-653 (1984). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000044000007000651000001&idtype=cvips&gifs=yes
[CrossRef]

1982 (1)

R. M. A. Azzam, "Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light," Optica Acta 29, 685-689 (1982). http://www.informaworld.com/smpp/content~content=a713820903~db=all
[CrossRef]

1979 (1)

1973 (2)

H. F. Hazebroek, and A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instru. 6,822-826 (1973). http://www.iop.org/EJ/abstract/0022-3735/6/9/013
[CrossRef]

D. E. Aspnes, "Foulier transformation detection system for rotating-analyzer ellipsometers," Opt. Commun. 8, 222-225 (1973).
[CrossRef]

1970 (1)

R. Greef, "An automatic ellipsometer for use in electrochemical investigations," Rev. Sci. Instrum. 41, 532-538 (1970). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000041000004000532000001&idtype=cvips&gifs=yes
[CrossRef]

Aizpurua, J.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, "Foulier transformation detection system for rotating-analyzer ellipsometers," Opt. Commun. 8, 222-225 (1973).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, "Arrangement of four photodetectors for measuring the state of polarization of light," Opt. Lett. 10,309-311 (1985).
[CrossRef] [PubMed]

R. M. A. Azzam, "Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light," Optica Acta 29, 685-689 (1982). http://www.informaworld.com/smpp/content~content=a713820903~db=all
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

Chew, H.

Dändliker, R.

R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44,651-653 (1984). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000044000007000651000001&idtype=cvips&gifs=yes
[CrossRef]

Dogariu, A.

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95,203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

Ellis, J.

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95,203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

Gan, X.

D. Ganic, X. Gan, and M. Gu, "Parametric study of three-dimensional near-field Mie scattering by dielectric particles," Opt. Commun. 216,1-10 (2003).
[CrossRef]

Ganic, D.

D. Ganic, X. Gan, and M. Gu, "Parametric study of three-dimensional near-field Mie scattering by dielectric particles," Opt. Commun. 216,1-10 (2003).
[CrossRef]

Greef, R.

R. Greef, "An automatic ellipsometer for use in electrochemical investigations," Rev. Sci. Instrum. 41, 532-538 (1970). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000041000004000532000001&idtype=cvips&gifs=yes
[CrossRef]

Gu, M.

D. Ganic, X. Gan, and M. Gu, "Parametric study of three-dimensional near-field Mie scattering by dielectric particles," Opt. Commun. 216,1-10 (2003).
[CrossRef]

Håkanson, U.

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4,2309-2315 (2004). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2004/4/i12/abs/nl048694n.html
[CrossRef]

Hanarp, P.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

Hazebroek, H. F.

H. F. Hazebroek, and A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instru. 6,822-826 (1973). http://www.iop.org/EJ/abstract/0022-3735/6/9/013
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

Holscher, A. A.

H. F. Hazebroek, and A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instru. 6,822-826 (1973). http://www.iop.org/EJ/abstract/0022-3735/6/9/013
[CrossRef]

Inouye, Y.

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4,2309-2315 (2004). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2004/4/i12/abs/nl048694n.html
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Kawata, S.

Keilmann, F.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

Kerker, M.

Kim, Z. H.

Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem.B 110,19804-19804 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44,651-653 (1984). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000044000007000651000001&idtype=cvips&gifs=yes
[CrossRef]

Leone, S. R.

Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem.B 110,19804-19804 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Nesci, A.

R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65,1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44,651-653 (1984). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000044000007000651000001&idtype=cvips&gifs=yes
[CrossRef]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4,2309-2315 (2004). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2004/4/i12/abs/nl048694n.html
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

Sutherland, D. S.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

Tortora, P.

R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

Vaccaro, L.

R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
[CrossRef]

Videen, G.

G. Videen, "Light scattering from a sphere on or near a surface," J. Opt. Soc. Am. A. 8,483 (1991).
[CrossRef]

Wang, D. -S.

Weiner, J. S.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65,1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65,1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

Appl. Opt. (2)

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 22,4563 (1992).
[CrossRef]

H. Chew, D. -S. Wang, and M. Kerker, "Elastic scattering of evanescent electromagnetic waves," Appl. Opt. 18,2679 (1979).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65,1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44,651-653 (1984). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000044000007000651000001&idtype=cvips&gifs=yes
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000002000368000001&idtype=cvips&gifs=yes
[CrossRef]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202,72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x
[CrossRef] [PubMed]

J. Opt. A (1)

R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, "Measuring three-dimensional polarization with scanning optical probes," J. Opt. A 6S18-S23 (2004). http://www.iop.org/EJ/abstract/1464-4258/6/3/003
[CrossRef]

J. Opt. Soc. Am. A. (1)

G. Videen, "Light scattering from a sphere on or near a surface," J. Opt. Soc. Am. A. 8,483 (1991).
[CrossRef]

J. Phys. Chem.B (1)

Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem.B 110,19804-19804 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html
[CrossRef] [PubMed]

J. Phys. E: Sci. Instru. (1)

H. F. Hazebroek, and A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instru. 6,822-826 (1973). http://www.iop.org/EJ/abstract/0022-3735/6/9/013
[CrossRef]

Nano Lett. (1)

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4,2309-2315 (2004). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2004/4/i12/abs/nl048694n.html
[CrossRef]

Opt. Commun. (2)

D. Ganic, X. Gan, and M. Gu, "Parametric study of three-dimensional near-field Mie scattering by dielectric particles," Opt. Commun. 216,1-10 (2003).
[CrossRef]

D. E. Aspnes, "Foulier transformation detection system for rotating-analyzer ellipsometers," Opt. Commun. 8, 222-225 (1973).
[CrossRef]

Opt. Lett. (2)

Optica Acta (1)

R. M. A. Azzam, "Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light," Optica Acta 29, 685-689 (1982). http://www.informaworld.com/smpp/content~content=a713820903~db=all
[CrossRef]

Phys. Rev. Lett. (1)

J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95,203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Greef, "An automatic ellipsometer for use in electrochemical investigations," Rev. Sci. Instrum. 41, 532-538 (1970). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000041000004000532000001&idtype=cvips&gifs=yes
[CrossRef]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Other (4)

P. S. Hauge and F. H. Dill, "Design and operation of ETA, and Automated Ellipsometer," IBM J. Res. Develop. 17, 472-489 (1973). http://domino.watson.ibm.com/tchjr/journalindex.nsf/0b9bc46ed06cbac1852565e6006fe1a0/47d82e1ff4acd49585256bfa006841c4?OpenDocument
[CrossRef]

M. Born and E. Wolf, Principles of Optics - 7th ed. p.25 Eq. 12 (Cambridge University Press, Cambridge, England, 1999).
[PubMed]

P. C. Gasson, Geometry of Spatial Forms-Ch. 8 (John Wiley & Sons, New York, USA, 1983).

K. G. Lee, H. W. Kihm, J. E. Kihm,  et al., "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007). http://www.nature.com/nphoton/journal/v1/n1/abs/nphoton.2006.37.html
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the experimental procedure. (a) The outer-plot (black line) results from a polar plot of the squared-rooted intensities for every detecting polarizer angle. The angle (θmax ) of the measured intensity maximum corresponds to the major axis angle and the square-rooted maximum (minimum) intensity is proportional to the major (minor) axis length. (b) One such experimental polar plot of the scattered light at one selected position is shown as filled circles. The black line is a guide to the eye. The elliptical polarization state is reconstructed (inner red line). (c) The red arrow represents the long axis of the ellipse shown in (b). By back-transformation using the experimentally determined polarizability tensor of the scatterer, the local field vector of local polarization is determined (black arrow).

Fig. 2.
Fig. 2.

(a). Schematic diagram of the tip polarizability tensor measurements. The tip end is illuminated by focusing a 780 nm plane wave and the incident beam polarization is rotated by 360° using a λ/2 plate. The tip axis is oriented along the z-axis and the laser beam is incident along the y-axis. The scattered light is detected in the direction of the incident beam by rotating a linear polarizer in front of the detector. (b) Polar plot of the square-rooted intensity of light scattered off the tip end for every incident light polarization. (c) The outer rim of (b) is fitted as an ellipse and the corresponding polarizability tensor is shown in upper part.

Fig. 3.
Fig. 3.

(a). Experimental setup: A 780 nm cw-mode Ti:Sapphire laser enters at normal incidence into one side facet of an equilaterally shaped prism and is retro-reflected at the other side facet to generate an evanescent standing wave on the top surface. The gold nanoparticle functionalized tip scatters the local fields into far-field region. The detection angle was set about 20° from the prism surface (-y axis). (b) Theoretically calculated local field components as a function of the scatterer position: vertical |Ez |2 (dashed line) and horizontal |Ex |2 (solid line) component, respectively. The corresponding local field vectors of polarization are presented at every position.

Fig. 4.
Fig. 4.

(a). A SEM image of a gold nanoparticle functionalized tip. (b) Polar plots of the square-rooted intensity of light scattered off the tip end for horizontal (open circles) and vertical (filled squares) polarizations of the incident light, respectively. The solid line represents the polar plot of square-rooted total scattered field intensity by rotating the incident beam polarization by 360° in 10 degrees steps. (c) Dependence of the scattered field intensity on the detecting polarizer angle at position x1, i.e., for a maximum of |ES,x |2 (open circles), and at a position x2, i.e., at a maximum of |ES,z |2 (filled squares) of the standing wave generated on the prism surface. The solid lines are fitted by using Eq. (2). The upper part shows polar plots generated from the data. (d) Intensity profiles of the field components ELocal,x (open circles) and ELocal,z (filled squares).

Fig. 5.
Fig. 5.

(a). Far-field tip characterization: experimental (solid line) and fitted (dashed line) data, respectively. (b) Dependence of the scattered field intensity on the detecting polarizer angle at intensity maxima of |ES,x |2 (open circles) and |ES,z |2 (filled squares) of the standing wave generated on the prism surface. (c) Spatial variation of the intensity profiles for the detecting polarizer angles of 0° (open circles) and 90° (filled squares) as a function of the tip position. (d) Intensity profiles of ELocal,x (open circles) and ELocal,z (filled squares) field components obtained by applying the back-transformation to (c), using the experimentally measured polarizability tensor.

Fig. 6.
Fig. 6.

Local field polarization vectors of the evanescent standing wave generated on the prism surface within a 600 nm scan range obtained by using three different gold-particle functionalized tips. The corresponding polarizability tensors are displayed above the scans.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E Local ( r ) = ( E x , E z ) = ( a 1 e iωt + i δ 1 , a 2 e iωt + i δ 2 ) , ( a 1 , a 2 > 0 ) ,
I P E S 2 = ( cos φ sin φ ) α ( E Local , x E Local , z ) 2
α = ( cos ζ sin ζ sin ζ cos ζ ) ( a 0 0 1 ) ( cos ζ sin ζ sin ζ cos ζ )

Metrics