Abstract

Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual-frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zellmer, U. Willamowski, A. Tünnermann, H. Welling, S. Unger, V. Reichel, H.-R. Müller, J. Kirchhof, and P. Albers, "High-Power cw Neodymium-Doped Fiber Laser Operating at 9.2 W with High Beam Quality," Opt. Lett. 20, 578−580 (1995).
    [CrossRef] [PubMed]
  2. K. H. Ylä-Jarkko, "Performance limitations of high-power DFB fiber lasers," IEEE Photon. Technol. Lett. 15, 191−193 (2003).
    [CrossRef]
  3. L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
    [CrossRef]
  4. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088−6092 (2004).
    [CrossRef] [PubMed]
  5. O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
    [CrossRef]
  6. P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003).
    [CrossRef]
  7. J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996).
    [CrossRef]
  8. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142−147 (2005).
    [CrossRef] [PubMed]
  9. X. Chen, J. Yao, and Z. Deng, "Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser," Opt. Lett. 30, 2068-2070 (2005).
    [CrossRef] [PubMed]
  10. Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
    [CrossRef]
  11. L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
    [CrossRef]
  12. L. Talaverno, S. Abad, S. Jarabo, and M. López-Amo, "Multiwavelength Fiber Laser Sources with Bragg-Grating Sensor Multiplexing Capability," J. Lightwave Technol. 19, 553−558 (2001).
    [CrossRef]
  13. A. Lewis, "Measurement of Length, Surface Form and Thermal Expansion Coefficient of Length Bars Up to 1.5 m Using Multiple-Wavelength Phase-Stepping Interferometry," Meas. Sci. Technol. 5, 694−703 (1994).
    [CrossRef]
  14. W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997).
    [CrossRef]
  15. M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
    [CrossRef]
  16. Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612−614 (2002).
    [CrossRef]
  17. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
    [CrossRef] [PubMed]
  18. X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
    [CrossRef]
  19. C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
    [CrossRef]
  20. C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
    [CrossRef]
  21. F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
    [CrossRef]
  22. J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000).
    [CrossRef]
  23. W. Guan and J. R. Marciante, "Dual-frequency operation in a short-cavity ytterbium-doped fiber laser," IEEE Photon. Technol. Lett. 19, 261−263 (2007).
    [CrossRef]
  24. W. Guan and J. R. Marciante, "Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser," Electron. Lett. 43, 558−559 (2007).
    [CrossRef]
  25. Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
    [CrossRef]
  26. M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt. 26, 3474−3478 (1987).
    [CrossRef] [PubMed]
  27. I. Kelson and A. Hardy, "Optimization of Strong Pumped Fiber Lasers," J. Lightwave Technol. 17, 891−897 (1999).
    [CrossRef]
  28. S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
    [CrossRef]
  29. J. R. Marciante and J. D. Zuegel, "High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification," Appl. Opt. 45, 6798−6804 (2006).
    [CrossRef] [PubMed]
  30. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013−1023 (1998).
    [CrossRef]
  31. G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations (Wiley, New York, 1960).
  32. N. Lagakos, J. A. Bucaro, and J. Jarzynski, "Temprature-Induced Optical Phase Shifts in Fibers," Appl. Opt. 20, 2305−2308 (1981).
    [CrossRef] [PubMed]

2007 (2)

W. Guan and J. R. Marciante, "Dual-frequency operation in a short-cavity ytterbium-doped fiber laser," IEEE Photon. Technol. Lett. 19, 261−263 (2007).
[CrossRef]

W. Guan and J. R. Marciante, "Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser," Electron. Lett. 43, 558−559 (2007).
[CrossRef]

2006 (2)

J. R. Marciante and J. D. Zuegel, "High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification," Appl. Opt. 45, 6798−6804 (2006).
[CrossRef] [PubMed]

Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
[CrossRef]

2005 (2)

2004 (7)

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088−6092 (2004).
[CrossRef] [PubMed]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
[CrossRef] [PubMed]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

2003 (2)

K. H. Ylä-Jarkko, "Performance limitations of high-power DFB fiber lasers," IEEE Photon. Technol. Lett. 15, 191−193 (2003).
[CrossRef]

P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003).
[CrossRef]

2002 (1)

Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612−614 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000).
[CrossRef]

1999 (3)

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

I. Kelson and A. Hardy, "Optimization of Strong Pumped Fiber Lasers," J. Lightwave Technol. 17, 891−897 (1999).
[CrossRef]

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

1998 (2)

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013−1023 (1998).
[CrossRef]

Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
[CrossRef]

1997 (1)

W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997).
[CrossRef]

1996 (2)

J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996).
[CrossRef]

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
[CrossRef]

1995 (1)

1994 (1)

A. Lewis, "Measurement of Length, Surface Form and Thermal Expansion Coefficient of Length Bars Up to 1.5 m Using Multiple-Wavelength Phase-Stepping Interferometry," Meas. Sci. Technol. 5, 694−703 (1994).
[CrossRef]

1993 (1)

F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
[CrossRef]

1987 (1)

1981 (1)

Abad, S.

Abdullah, M. K.

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

Ahmad, H.

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

Alam, S.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

Albers, P.

Bucaro, J. A.

Chen, X.

Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
[CrossRef]

X. Chen, J. Yao, and Z. Deng, "Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser," Opt. Lett. 30, 2068-2070 (2005).
[CrossRef] [PubMed]

Chi, S.

P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003).
[CrossRef]

Dai, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
[CrossRef]

Davis, M. K.

Delorme, F.

F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
[CrossRef]

Demokan, M. S.

Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
[CrossRef]

Deng, Z.

Digonnet, M. J. F.

Dong, L.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
[CrossRef]

Dong, X.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
[CrossRef] [PubMed]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Feng, X.

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
[CrossRef] [PubMed]

Fu, S.

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

Gambini, P.

F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
[CrossRef]

Graydon, O.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
[CrossRef]

Grudinin, A. B.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

Guan, W.

W. Guan and J. R. Marciante, "Dual-frequency operation in a short-cavity ytterbium-doped fiber laser," IEEE Photon. Technol. Lett. 19, 261−263 (2007).
[CrossRef]

W. Guan and J. R. Marciante, "Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser," Electron. Lett. 43, 558−559 (2007).
[CrossRef]

Guo, X.

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Hardy, A.

Holloway, W. T.

W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997).
[CrossRef]

Huang, D.

J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000).
[CrossRef]

Ibsen, M.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

Jarabo, S.

Jarzynski, J.

Jeong, Y.

Jiang, S.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Kai, G.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
[CrossRef] [PubMed]

Keating, A. J.

W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997).
[CrossRef]

Kelson, I.

Kim, S. J.

J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996).
[CrossRef]

Kirchhof, J.

Lagakos, N.

Laming, R. I.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
[CrossRef]

Lee, Y. W.

J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996).
[CrossRef]

Lewis, A.

A. Lewis, "Measurement of Length, Surface Form and Thermal Expansion Coefficient of Length Bars Up to 1.5 m Using Multiple-Wavelength Phase-Stepping Interferometry," Meas. Sci. Technol. 5, 694−703 (1994).
[CrossRef]

Lit, J. W. Y.

Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612−614 (2002).
[CrossRef]

Liu, S. Y.

Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
[CrossRef]

Liu, X.

Liu, Y.

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
[CrossRef] [PubMed]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

Loh, W. H.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
[CrossRef]

López-Amo, M.

Lu, C.

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142−147 (2005).
[CrossRef] [PubMed]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

Lu, F.

Luo, T.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Mafi, A.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Mahdi, M. A.

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

Mao, Q.

Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612−614 (2002).
[CrossRef]

Maoloney, J. V.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Marciante, J. R.

W. Guan and J. R. Marciante, "Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser," Electron. Lett. 43, 558−559 (2007).
[CrossRef]

W. Guan and J. R. Marciante, "Dual-frequency operation in a short-cavity ytterbium-doped fiber laser," IEEE Photon. Technol. Lett. 19, 261−263 (2007).
[CrossRef]

J. R. Marciante and J. D. Zuegel, "High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification," Appl. Opt. 45, 6798−6804 (2006).
[CrossRef] [PubMed]

Müller, H.-R.

Ng, J.

Ng, J. H.

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Nilsson, J.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088−6092 (2004).
[CrossRef] [PubMed]

J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996).
[CrossRef]

Pantell, R. H.

Partha, R. C.

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

Payne, D. N.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088−6092 (2004).
[CrossRef] [PubMed]

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

Peng, P.-C.

P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003).
[CrossRef]

Peyghambarian, N.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Poopalan, P.

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

Puleo, M.

F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
[CrossRef]

Qiu, J.

J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000).
[CrossRef]

Qiu, L.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Reichel, V.

Sahu, J. K.

Sakuda, K.

Sampson, D. D.

W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997).
[CrossRef]

Schülzgen, A.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Selvakennedy, S.

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

Slempkes, S.

F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
[CrossRef]

Sun, J.

J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000).
[CrossRef]

Sun, L.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Talaverno, L.

Tam, H. Y.

Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
[CrossRef]

Temyanko, V. L.

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

Tseng, H.-Y.

P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003).
[CrossRef]

Tünnermann, A.

Unger, S.

Wang, X.

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Welling, H.

Willamowski, U.

Xie, S.

Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
[CrossRef]

Xiong, L.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Xu, Y. Z.

Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
[CrossRef]

Yamada, M.

Yang, X.

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142−147 (2005).
[CrossRef] [PubMed]

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Yao, J.

Yao, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
[CrossRef]

Ylä-Jarkko, K. H.

K. H. Ylä-Jarkko, "Performance limitations of high-power DFB fiber lasers," IEEE Photon. Technol. Lett. 15, 191−193 (2003).
[CrossRef]

Yuan, S.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous Four-Wavelength Lasing Oscillations in an Erbium-Doped Fiber Laser with Two High Birefrigence Fiber Bragg Gratings," Opt. Express 12, 2056-2061 (2004).
[CrossRef] [PubMed]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

Zellmer, H.

Zervas, M. N.

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

Zhang, W.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

Zhao, C.-L.

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

Zhou, X.

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142−147 (2005).
[CrossRef] [PubMed]

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (3)

Electron. Lett. (2)

W. Guan and J. R. Marciante, "Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser," Electron. Lett. 43, 558−559 (2007).
[CrossRef]

F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast Tunable 1.5 μm Distributed Bragg Reflector Laser for Optical Switching Applications," Electron. Lett. 29, 41−43 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (13)

W. Guan and J. R. Marciante, "Dual-frequency operation in a short-cavity ytterbium-doped fiber laser," IEEE Photon. Technol. Lett. 19, 261−263 (2007).
[CrossRef]

Y. Z. Xu, H. Y. Tam, S. Y. Liu, and M. S. Demokan, "Pump-Induced Thermal Effects in Er-Yb Fiber Grating DBR Lasers," IEEE Photon. Technol. Lett. 10, 1253−1255 (1998).
[CrossRef]

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-Frequency Operation of an Er-Doped Twincore Fiber Loop Laser," IEEE Photon. Technol. Lett. 8, 63−65 (1996).
[CrossRef]

P.-C. Peng, H.-Y. Tseng, and S. Chi, "A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Pérot laser diode," IEEE Photon. Technol. Lett. 15, 661−663 (2003).
[CrossRef]

J. Nilsson, Y. W. Lee, and S. J. Kim, "Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 8, 1630−1632 (1996).
[CrossRef]

Y. Yao, X. Chen, Y. Dai, and S. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187−189 (2006).
[CrossRef]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Beating Frequency Tunable Dual-Wavelength Erbium-Doped Fiber Laser with One Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16, 1453−1455 (2004).
[CrossRef]

W. T. Holloway, A. J. Keating, and D. D. Sampson, "Multiwavelength Source for Spectraum-Sliced WDM Access Networks and LAN’s," IEEE Photon. Technol. Lett. 9, 1014−1016 (1997).
[CrossRef]

M. Ibsen, S. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, "8- and 16-channel all-Fiber DFB laser WDM transmitters with integrated pump redundancy," IEEE Photon. Technol. Lett. 11, 1114-1116 (1999).
[CrossRef]

Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612−614 (2002).
[CrossRef]

K. H. Ylä-Jarkko, "Performance limitations of high-power DFB fiber lasers," IEEE Photon. Technol. Lett. 15, 191−193 (2003).
[CrossRef]

L. Qiu, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Maoloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592−2594 (2004).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," IEEE Photon. Technol. Lett. 16, 762−764 (2004).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

A. Lewis, "Measurement of Length, Surface Form and Thermal Expansion Coefficient of Length Bars Up to 1.5 m Using Multiple-Wavelength Phase-Stepping Interferometry," Meas. Sci. Technol. 5, 694−703 (1994).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

C.-L. Zhao, X. Yang, J. H. Ng, X. Dong, X. Guo, X. Wang, X. Zhou, and C. Lu, "Switchable dual-wavelength erbium-doped fiber-ring lasers using a fiber Bragg grating in high-birefringence fiber," Microwave Opt. Technol. Lett. 41, 73−75 (2004).
[CrossRef]

Opt. Commun. (3)

C.-L. Zhao, X. Yang, C. Lu, J. H. Ng, X. Guo, R. C. Partha, and X. Dong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313−317 (2004).
[CrossRef]

S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, "Design Optimisation of Erbium-Doped Fibre Ring Laser Through Numerical Simulation," Opt. Commun. 170, 247−253 (1999).
[CrossRef]

J. Sun, J. Qiu, and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 183, 193−197 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations (Wiley, New York, 1960).

Supplementary Material (5)

» Media 1: AVI (1215 KB)     
» Media 2: AVI (1229 KB)     
» Media 3: AVI (1328 KB)     
» Media 4: AVI (518 KB)     
» Media 5: AVI (504 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Setup of the dual-frequency fiber laser. PM is the power meter, OSA is the optical spectrum analyzer, and FP is the Febry–Parot scanning spectrometer.

Fig. 2.
Fig. 2.

Measured transmission spectrum of the PM and SM FBGs at room temperature.

Fig. 3.
Fig. 3.

Measured laser output power as a function of pump current.

Fig. 4.
Fig. 4.

Movie of the measured output spectrum on the OSA at different pump levels. [Media 1]

Fig. 5.
Fig. 5.

Movie of the measured output spectrum on the FP spectrometer at different pump levels. [Media 2]

Fig. 6.
Fig. 6.

Measured laser power as a function of pump current. Each curve represents a different frequency.

Fig. 7.
Fig. 7.

Calculated pump distribution along the 1.5-cm active fiber at different pump levels.

Fig. 8.
Fig. 8.

Calculated thermal distribution along the fiber laser cavity at different pump levels.

Fig. 9.
Fig. 9.

Movie of the calculated PM and SM FBG reflection spectra at different pump levels [Media 3]

Fig. 10.
Fig. 10.

Calculated threshold gain discrimination between the fast and slow axes as a function of the pump current.

Fig. 11.
Fig. 11.

Movie of the measured output spectrum on FP spectrometer at different PM FBG temperatures. [Media 4]

Fig. 12.
Fig. 12.

Movie of the measured output spectrum on OSA at different PM FBG temperatures. [Media 5]

Tables (2)

Tables Icon

Table I. Parameters used for the laser pump simulation.

Tables Icon

Table II. Parameters used for the thermal calculation.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

N 2 ( z ) N = P p ( z ) σ ap Γ p λ p + Γ s σ a ( λ ) P T ( z , λ ) λdλ P p ( z ) ( σ ap + σ ep ) Γ p λ p + hcA τ + Γ s [ σ e ( λ ) + σ a ( λ ) ] P T ( z , λ ) λdλ ,
d P p ( z ) dz = Γ p [ σ ap N ( σ ap + σ ep ) N 2 ( z ) ] P p ( z ) α p ( z ) P p ( z ) ,
± d P ± ( z , λ ) dz = Γ s { [ σ e ( λ ) + σ a ( λ ) ] N 2 ( z ) σ a ( λ ) N } P ± ( z , λ ) + Γ s σ e ( λ ) N 2 ( z ) P 0 ( λ ) α s ( z , λ ) P ± ( z , λ ) ,
P 0 ( λ ) = 2 h c 2 λ 3 .
P + ( 0 , λ 1,2 ) = R 0 ( λ 1,2 ) P ( 0 , λ 1,2 ) ,
P ( L , λ 1,2 ) = R L ( λ 1,2 ) P + ( L , λ 1,2 ) ,
R 0 ( λ ) = { R PM , λ = λ 1 , λ 2 0 , otherwise } ,
R L ( λ ) = { R SM , λ = λ 1 , λ 2 0 , otherwise }
ρ c ν T ( r , z , t ) t k 2 T ( r , z , t ) = η p ν ( r , z ) ,
p ν ( z ) = { 1 π a 2 d P p ( z ) dz in the core 0 in the cladding .
k T ( r ) | r = b = h [ T ( b ) T 0 ] ,
[ F ] j = [ F 11 j F 12 j F 21 j F 22 j ] .
F 11 j = [ cosh ( γ j L j ) + i Δ β j L j sinh ( γ j L j ) ( γ j L j ) ] exp ( i β B j L j ) ,
F 12 j = κ j L j sinh ( γ j L j ) exp [ i ( β B j L j + ϕ j ) ] ( γ j L j ) ,
F 21 j = κ j L j sinh ( γ j L j ) exp [ i ( β B j L j + ϕ j ) ] ( γ j L j )
F 22 j = [ cosh ( γ j L j ) i Δ β j L j sinh ( γ j L j ) ( γ j L j ) ] exp [ i ( β B j L j ) ] ,
[ F ] = i = 1 N [ F ] i
R = F 21 F 11 2 .
G th R 1 ( λ ) R 2 ( λ ) = 1 .

Metrics