Abstract

We experimentally and numerically investigate the spatial distribution of the emission from a photonic crystal waveguide, coupled with defects, that are located at the output edge. Two defects that are located symmetrically enhance the directivity of the beam compared to that of a plain waveguide, as was reported in recently conducted theoretical work. We further demonstrate that a single defect deflects of the beam. By choosing the defect resonance that is close to the edge of the pass band of the waveguide, where the group velocity of the beam within the waveguide is slow, a significant amount of deflection can be achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
    [CrossRef]
  2. S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
    [CrossRef]
  3. D. N. Chigrin, S. Enoch, C. M. S. Torres, G. Tayeb, "Self guiding in two-dimensional photonic crystals," Opt. Express 11, 1203 (2003).
    [CrossRef] [PubMed]
  4. A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
    [CrossRef]
  5. K. Guven, E. Ozbay, "A plain photonic crystal for generating directional radiation from embedded sources," J. Opt. A 9, 239 (2007).
    [CrossRef]
  6. A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
    [CrossRef] [PubMed]
  7. E. Moreno, F. J. Garcia, and L. Martin-Morena, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
    [CrossRef]
  8. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
    [CrossRef] [PubMed]
  9. S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
    [CrossRef]
  10. I. Bulu, H. Caglayan, and E. Ozbay "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078 (2005).
    [CrossRef] [PubMed]
  11. Chii-Chang Chen, T. Pertsch, R. Iliev, F. Lederer, and A. Tünnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423 (2006).
    [CrossRef] [PubMed]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
    [CrossRef]
  13. T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE. J. Quantum Electron. 38, 909 (2002).
    [CrossRef]
  14. L. Wu, M. Mazilu, and T. F. Krauss, "Beam steering in planar-photonic crystals: from superprism to supercollimator," J. Lightwave Technol. 21, 561 (2003).
    [CrossRef]
  15. K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
    [CrossRef]
  16. E. Özbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett.,  69, 743 (1996).
    [CrossRef]
  17. E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).
  18. W. Smigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
    [CrossRef]
  19. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
    [CrossRef]
  20. J. Goh, I. Fushman, D. Englund, and J. Vuckovic, "Genetic optimization of photonic bandgap structures," Opt. Express 15, 8218 (2007).
    [CrossRef] [PubMed]

2007 (4)

K. Guven, E. Ozbay, "A plain photonic crystal for generating directional radiation from embedded sources," J. Opt. A 9, 239 (2007).
[CrossRef]

W. Smigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

J. Goh, I. Fushman, D. Englund, and J. Vuckovic, "Genetic optimization of photonic bandgap structures," Opt. Express 15, 8218 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078 (2005).
[CrossRef] [PubMed]

2004 (4)

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

E. Moreno, F. J. Garcia, and L. Martin-Morena, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
[CrossRef]

2003 (3)

2002 (2)

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE. J. Quantum Electron. 38, 909 (2002).
[CrossRef]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

1996 (1)

E. Özbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett.,  69, 743 (1996).
[CrossRef]

1994 (1)

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Alici, K. B.

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

Aydin, K.

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

Baba, T.

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE. J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Biswas, R.

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Bloom, D. M.

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Bostak, J.

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Bulu, I.

Caglayan, H.

Chigrin, D. N.

Chii-Chang Chen,

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

J. Goh, I. Fushman, D. Englund, and J. Vuckovic, "Genetic optimization of photonic bandgap structures," Opt. Express 15, 8218 (2007).
[CrossRef] [PubMed]

Enoch, S.

D. N. Chigrin, S. Enoch, C. M. S. Torres, G. Tayeb, "Self guiding in two-dimensional photonic crystals," Opt. Express 11, 1203 (2003).
[CrossRef] [PubMed]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

Faraon, A.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

J. Goh, I. Fushman, D. Englund, and J. Vuckovic, "Genetic optimization of photonic bandgap structures," Opt. Express 15, 8218 (2007).
[CrossRef] [PubMed]

Garcia, F. J.

E. Moreno, F. J. Garcia, and L. Martin-Morena, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Goh, J.

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Gralak, B.

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

Griol, A.

A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
[CrossRef]

Guven, K.

K. Guven, E. Ozbay, "A plain photonic crystal for generating directional radiation from embedded sources," J. Opt. A 9, 239 (2007).
[CrossRef]

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

Ho, K. M.

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Krauss, T. F.

Marti, J.

A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
[CrossRef]

Martinez, A.

A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
[CrossRef]

Martin-Morena, L.

E. Moreno, F. J. Garcia, and L. Martin-Morena, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Mazilu, M.

Miguez, H.

A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
[CrossRef]

Moreno, E.

E. Moreno, F. J. Garcia, and L. Martin-Morena, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Ozbay, E.

K. Guven, E. Ozbay, "A plain photonic crystal for generating directional radiation from embedded sources," J. Opt. A 9, 239 (2007).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078 (2005).
[CrossRef] [PubMed]

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

Özbay, E.

E. Özbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett.,  69, 743 (1996).
[CrossRef]

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Sandoghar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Smigaj, W.

W. Smigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
[CrossRef]

Soukoulis, C. M.

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Tayeb, G.

D. N. Chigrin, S. Enoch, C. M. S. Torres, G. Tayeb, "Self guiding in two-dimensional photonic crystals," Opt. Express 11, 1203 (2003).
[CrossRef] [PubMed]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

Temelkuran, B.

E. Özbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett.,  69, 743 (1996).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Torres, C. M. S.

Tuttle, G.

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

Vos, W. L.

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

Vuckovic, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

J. Goh, I. Fushman, D. Englund, and J. Vuckovic, "Genetic optimization of photonic bandgap structures," Opt. Express 15, 8218 (2007).
[CrossRef] [PubMed]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Wu, L.

Appl. Phys. Lett. (6)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588 (2002);S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

E. Özbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett.,  69, 743 (1996).
[CrossRef]

E. Özbay, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "New double-etch geometry for millimeter-wave photonic crystals with a semi-tunable photonic band gap," Appl. Phys. Lett. 65, 1617 (1994).

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, "Efficient Photonic Crystal Cavity-Waveguide Couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

IEEE. J. Quantum Electron. (1)

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE. J. Quantum Electron. 38, 909 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A (1)

K. Guven, E. Ozbay, "A plain photonic crystal for generating directional radiation from embedded sources," J. Opt. A 9, 239 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (5)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomenon in photonic crystals," Phys. Rev. B 58, 10096 (1998).
[CrossRef]

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004).
[CrossRef]

W. Smigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
[CrossRef]

A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004).
[CrossRef]

E. Moreno, F. J. Garcia, and L. Martin-Morena, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(color online) (left) Schematic view of the PC-waveguide structure with a defect located at the center. This setup is used to measure the resonance frequency of the defects. (right) The (a) measured and (b) simulated transmission spectra of the waveguide, and the defects of radii r = 0, (D0), r = 505 μm (D1), and r = 760 μm (D2), respectively. The band gap of the 2D bulk photonic crystal extends from 12.2 GHz - 19.2 GHz.

Fig. 2.
Fig. 2.

(color online) (a). Schematic view of the simulated PC-waveguide structure with a defect located at the left edge of the output, and an array of field monitors placed along the semicircle. The input signal propagates upwards through the waveguide. (b). Detailed view of the waveguide end and the coupling defect.

Fig. 3.
Fig. 3.

(color online) The angular resolved transmission spectra of: (a-c) plain waveguide, (d-f) waveguide + two D0 defetcs, (g-i) waveguide + single D0 defect, (j-l) waveguide + single D1 defect. The last column shows the experimental (solid) and simulated (dashed) polar plot of the beam profile at 17.2 GHz (c,f, and i) and at 16.5 GHz (l) taken from their respective spectrum.

Fig. 4.
Fig. 4.

(color online) (a). The time averaged angular transmission profile for the bare waveguide and the waveguide coupled with two defects (D0). (b). The polar plot of the beam for different defects at their respective resonance frequencies.

Metrics