Abstract

We demonstrate real-time depth profiling of ultrafast micro-machining of stainless steel at scan rates of 46 kHz. The broad bandwidth and high power of the light source allows for simultaneous machining and coaxial Fourier-domain interferometric imaging of the ablation surface with depth resolutions of 6 μm. Since the same light is used to machine as to probe, spatial and temporal synchronization are automatic.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
    [CrossRef]
  2. W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
    [CrossRef]
  3. D. G. Papazoglou, V. Papadakis, and D. Anglos "In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures," J. Anal. At. Spectrom. 19,483-488 (2004).
    [CrossRef]
  4. B. J. Vakoc, G. J. Tearney and B. E. Bouma "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12,020501 (2007).
    [CrossRef] [PubMed]
  5. R. Lausten and P. Balling‘On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery," Appl. Phys. Lett. 79,884-886 (2001).
    [CrossRef]
  6. C. S. Nielsen and P. Balling "Deep drilling of metals with ultrashort laser pulses: A two-stage process," J. Appl. Phys. 99,093101 (2006).
    [CrossRef]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
    [CrossRef]
  8. R. Huber, D.C Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006).
    [CrossRef] [PubMed]

2007

B. J. Vakoc, G. J. Tearney and B. E. Bouma "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12,020501 (2007).
[CrossRef] [PubMed]

2006

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

C. S. Nielsen and P. Balling "Deep drilling of metals with ultrashort laser pulses: A two-stage process," J. Appl. Phys. 99,093101 (2006).
[CrossRef]

R. Huber, D.C Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006).
[CrossRef] [PubMed]

2004

D. G. Papazoglou, V. Papadakis, and D. Anglos "In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures," J. Anal. At. Spectrom. 19,483-488 (2004).
[CrossRef]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
[CrossRef]

2001

R. Lausten and P. Balling‘On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery," Appl. Phys. Lett. 79,884-886 (2001).
[CrossRef]

1996

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Adler, D.C

Anglos, D.

D. G. Papazoglou, V. Papadakis, and D. Anglos "In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures," J. Anal. At. Spectrom. 19,483-488 (2004).
[CrossRef]

Balling, P.

C. S. Nielsen and P. Balling "Deep drilling of metals with ultrashort laser pulses: A two-stage process," J. Appl. Phys. 99,093101 (2006).
[CrossRef]

R. Lausten and P. Balling‘On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery," Appl. Phys. Lett. 79,884-886 (2001).
[CrossRef]

Bouma, B. E.

B. J. Vakoc, G. J. Tearney and B. E. Bouma "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12,020501 (2007).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

Chichkov, B.N.

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
[CrossRef]

Fujimoto, J. G.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
[CrossRef]

Huber, R.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
[CrossRef]

Lausten, R.

R. Lausten and P. Balling‘On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery," Appl. Phys. Lett. 79,884-886 (2001).
[CrossRef]

Momma, C.

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Nielsen, C. S.

C. S. Nielsen and P. Balling "Deep drilling of metals with ultrashort laser pulses: A two-stage process," J. Appl. Phys. 99,093101 (2006).
[CrossRef]

Nolte, S.

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Oh, W. Y.

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

Papadakis, V.

D. G. Papazoglou, V. Papadakis, and D. Anglos "In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures," J. Anal. At. Spectrom. 19,483-488 (2004).
[CrossRef]

Papazoglou, D. G.

D. G. Papazoglou, V. Papadakis, and D. Anglos "In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures," J. Anal. At. Spectrom. 19,483-488 (2004).
[CrossRef]

Tearney, G. J.

B. J. Vakoc, G. J. Tearney and B. E. Bouma "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12,020501 (2007).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

Tunnermann, A.

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney and B. E. Bouma "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12,020501 (2007).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

von Alvensleben, F.

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Yun, S. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

Appl. Phys. A

B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tunnermann "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63,109-115 (1996).
[CrossRef]

Appl. Phys. Lett.

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88,103902 (2006).
[CrossRef]

R. Lausten and P. Balling‘On-the-fly depth profiling during ablation with ultrashort laser pulses: A tool for accurate micromachining and laser surgery," Appl. Phys. Lett. 79,884-886 (2001).
[CrossRef]

J. Anal. At. Spectrom.

D. G. Papazoglou, V. Papadakis, and D. Anglos "In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures," J. Anal. At. Spectrom. 19,483-488 (2004).
[CrossRef]

J. Appl. Phys.

C. S. Nielsen and P. Balling "Deep drilling of metals with ultrashort laser pulses: A two-stage process," J. Appl. Phys. 99,093101 (2006).
[CrossRef]

J. Biomed. Opt.

B. J. Vakoc, G. J. Tearney and B. E. Bouma "Real-time microscopic visualization of tissue response to laser thermal therapy," J. Biomed. Opt. 12,020501 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66,239-303 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. While adjustable, the reference arm and galvanometer mirrors are stationary for the experiments.

Fig. 2.
Fig. 2.

Normalized spectra emitted by the laser and measured by the InGaAs spectrometer. Inset shows measured point spread function with Gaussian fit of FWHM of 6 μm.

Fig. 3.
Fig. 3.

Two representative M-mode images of the ablation created by the system. Arrows are intended as a guide for the eye to regions of increased cutting speed.

Metrics