Abstract

A FBG was written in a two-hole fiber with internal alloy electrodes. Nanosecond high current pulses cause metal expansion, increase birefringence and tune the gratings with a response time of 29 ns. This short length, low loss, all-spliced high-speed wavelength switching devices described here has potential use in Q-switching fiber laser.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, "A Bragg Grating-Tuned Fiber Laser Strain Sensor System," IEEE Photon. Technol. Lett. 5, 263-266 (1993).
    [CrossRef]
  2. M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill, "Dispersion variable fibre Bragg grating using a piezoelectric stack," Electron. Lett. 32, 2000-2001 (1996).
    [CrossRef]
  3. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fibre Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
    [CrossRef]
  4. C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, "A fiber optic sensor for transverse strain measurement," Exp. Mech. 39, 202- 209 (1999).Q1
    [CrossRef]
  5. M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. C. Jones, D. Zhao, L. Zhang, and I. Bennion, "Differential birefringence in Bragg gratings in multicore fiber under transverse stress," Opt. Lett,  29, 2225-2227 (2004).
    [CrossRef] [PubMed]
  6. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, "Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microsturctural fibers," Opt. Lett. 31, 2260-2262 (2006).
    [CrossRef] [PubMed]
  7. H. M. Xie, Ph. Dabkiewicz, R. Ulrich, and K. Okamoto, "Side-hole fiber for fiber-optic pressure sensing," Opt. Lett. 11, 333-335 (1986).
    [CrossRef] [PubMed]
  8. .S. Kreger, S. Calvert, and E. Udd, "High Pressure Sensing using Fiber Bragg Grating written in Birefringent Side Hole Fiber," in Proceedings of OFS-15, Portland, Oregon, 355-358 (2002).
  9. H. Knape, and W. Margulis, "All-fiber polarization switch," Opt. Lett. 32, 614-616 (2007).
    [CrossRef] [PubMed]
  10. M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27,1643-1645 (2002).
    [CrossRef]
  11. W. Zhang, J. A. R. Williams, and I. Bennion, "Polarization Synthesized Optical Transversal Filter Employing High Birefringence Fiber Gratings," IEEE Photon. Technol. Lett. 13, 523-525 (2001).
    [CrossRef]
  12. E. Chehura, C.-C. Ye, S. E Staines, S. W James, and R. P Tatam, "Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load," Smart Mater. Struct. 13, 888-895 (2004).Q2
    [CrossRef]
  13. J. Paul, L. Zhao, B. Ngoi, and Z. Fang, "Bragg grating temperature sensors: modeling the effect of adhesion of polymeric coatings," Sens. Rev. 24, 364-369 (2004).Q3
    [CrossRef]
  14. E. Chmielewska, W. Urbanczyk, and W. J. Bock, "Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefrigent side-hole fiber," Appl. Opt. 42, 6284-6291 (2003).
    [CrossRef] [PubMed]

2007

2006

2004

M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. C. Jones, D. Zhao, L. Zhang, and I. Bennion, "Differential birefringence in Bragg gratings in multicore fiber under transverse stress," Opt. Lett,  29, 2225-2227 (2004).
[CrossRef] [PubMed]

E. Chehura, C.-C. Ye, S. E Staines, S. W James, and R. P Tatam, "Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load," Smart Mater. Struct. 13, 888-895 (2004).Q2
[CrossRef]

J. Paul, L. Zhao, B. Ngoi, and Z. Fang, "Bragg grating temperature sensors: modeling the effect of adhesion of polymeric coatings," Sens. Rev. 24, 364-369 (2004).Q3
[CrossRef]

2003

2002

2001

W. Zhang, J. A. R. Williams, and I. Bennion, "Polarization Synthesized Optical Transversal Filter Employing High Birefringence Fiber Gratings," IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

1999

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, "A fiber optic sensor for transverse strain measurement," Exp. Mech. 39, 202- 209 (1999).Q1
[CrossRef]

1997

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fibre Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

1996

M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill, "Dispersion variable fibre Bragg grating using a piezoelectric stack," Electron. Lett. 32, 2000-2001 (1996).
[CrossRef]

1993

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, "A Bragg Grating-Tuned Fiber Laser Strain Sensor System," IEEE Photon. Technol. Lett. 5, 263-266 (1993).
[CrossRef]

1986

Appl. Opt.

Electron. Lett.

M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill, "Dispersion variable fibre Bragg grating using a piezoelectric stack," Electron. Lett. 32, 2000-2001 (1996).
[CrossRef]

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fibre Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Exp. Mech.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, "A fiber optic sensor for transverse strain measurement," Exp. Mech. 39, 202- 209 (1999).Q1
[CrossRef]

IEEE Photon. Technol. Lett.

W. Zhang, J. A. R. Williams, and I. Bennion, "Polarization Synthesized Optical Transversal Filter Employing High Birefringence Fiber Gratings," IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures, "A Bragg Grating-Tuned Fiber Laser Strain Sensor System," IEEE Photon. Technol. Lett. 5, 263-266 (1993).
[CrossRef]

Opt. Lett

M. Silva-Lopez, C. Li, W. N. MacPherson, A. J. Moore, J. S. Barton, J. D. C. Jones, D. Zhao, L. Zhang, and I. Bennion, "Differential birefringence in Bragg gratings in multicore fiber under transverse stress," Opt. Lett,  29, 2225-2227 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Sens. Rev.

J. Paul, L. Zhao, B. Ngoi, and Z. Fang, "Bragg grating temperature sensors: modeling the effect of adhesion of polymeric coatings," Sens. Rev. 24, 364-369 (2004).Q3
[CrossRef]

Smart Mater. Struct.

E. Chehura, C.-C. Ye, S. E Staines, S. W James, and R. P Tatam, "Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load," Smart Mater. Struct. 13, 888-895 (2004).Q2
[CrossRef]

Other

.S. Kreger, S. Calvert, and E. Udd, "High Pressure Sensing using Fiber Bragg Grating written in Birefringent Side Hole Fiber," in Proceedings of OFS-15, Portland, Oregon, 355-358 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross section of the metal-filled fiber used here (SEM picture).

Fig. 2.
Fig. 2.

(Color online) Experiment set-up. TLS: tunable laser source; PC: polarization controller; OSA: optical spectrum analyzer.

Fig. 3.
Fig. 3.

(Color online) Temperature dependence of Bragg resonance for S and P polarization in a steady-state situation.

Fig. 4.
Fig. 4.

Typical current pulse used in the dynamic experiment. Imperfect matching into 50 Ω causes the small step at 100 ns and the undershoot.

Fig. 5.
Fig. 5.

Full switching off-on is accomplished with 29 ns risetime. Inset, the time evolution of signal in microseconds.

Fig. 6.
Fig. 6.

Full switching on-off is accomplished with 29 ns falltime. Inset, the time evolution of signal in microseconds.

Metrics