Abstract

We analyze the performance of bidirectional WDM PON architecture which utilizes distributed Raman amplification and pump recycling technique. The maximum reach at data rates of 622 Mb/s and 1.25 Gb/s in the proposed WDM PON architecture is calculated by taking into account the effects of power budget, chromatic dispersion of transmission fiber, and Raman amplification-induced noises with a given amount of Raman pump power. From the result, the maximum reach for 622 Mb/s and 1.25 Gb/s signal transmission is calculated to be 65 km and 60 km with a Raman pump power of 700 mW, respectively. We also find that the calculated results agree well with the experimental results which were reported previously.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, O. Marmur, J. Ruhmann, and Y. Zuiderveld, "DWDM reach extension of a GPON to 135 km," J. Lightwave Technol. 24, 29-31 (2006).
    [CrossRef]
  2. I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, "10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification," presented at Eur. Conf. Optical Communication (ECOC2006), Sep. 2006, We3.P.166.
  3. H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, "A hybrid-amplified PON with 75-nm downstream band-with, 60 km reach, 1:64 split and multiple video services," presented at OFC2007/NFOEC, Mar. 2007, OWL2.
  4. S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, "Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks," J. Lightwave Technol. 25, 271-276 (2007).
    [CrossRef]
  5. J. H. Lee, Y-G. Han, S. B. Lee, and C. H. Kim, "Raman amplification-based WDM-PON architecture with centralized Raman pump-driven, spectrum-sliced erbium ASE and polarization-insensitive EAMs," Optics Express 14, 9036-9041 (2006).
    [CrossRef] [PubMed]
  6. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, "Dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump for efficiency enhancement," IEEE Photon. Technol. Lett. 17, 43-45 (2005).
    [CrossRef]
  7. C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  8. C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, S. B. Lee, "Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON," presented at OFC2007/NFOEC, Mar. 2007, JWA82.
  9. Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photonics Technol. Lett. 11,715-717 (1999).
    [CrossRef]
  10. C. H. Kim, J. Bromage, and R. M. Jopson, "Reflection-induced penalty in Raman amplified systems," IEEE Photonics Technol. Lett. 14,573-575 (2002).
    [CrossRef]
  11. C. R. S. Fludger, V. Handerek, and R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightwave Technol. 19,1140-1148 (2001).
    [CrossRef]

2007

2006

J. H. Lee, Y-G. Han, S. B. Lee, and C. H. Kim, "Raman amplification-based WDM-PON architecture with centralized Raman pump-driven, spectrum-sliced erbium ASE and polarization-insensitive EAMs," Optics Express 14, 9036-9041 (2006).
[CrossRef] [PubMed]

R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, O. Marmur, J. Ruhmann, and Y. Zuiderveld, "DWDM reach extension of a GPON to 135 km," J. Lightwave Technol. 24, 29-31 (2006).
[CrossRef]

2005

J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, "Dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump for efficiency enhancement," IEEE Photon. Technol. Lett. 17, 43-45 (2005).
[CrossRef]

2002

C. H. Kim, J. Bromage, and R. M. Jopson, "Reflection-induced penalty in Raman amplified systems," IEEE Photonics Technol. Lett. 14,573-575 (2002).
[CrossRef]

2001

1999

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photonics Technol. Lett. 11,715-717 (1999).
[CrossRef]

1991

C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, "Dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump for efficiency enhancement," IEEE Photon. Technol. Lett. 17, 43-45 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photonics Technol. Lett. 11,715-717 (1999).
[CrossRef]

C. H. Kim, J. Bromage, and R. M. Jopson, "Reflection-induced penalty in Raman amplified systems," IEEE Photonics Technol. Lett. 14,573-575 (2002).
[CrossRef]

J. Lightwave Technol.

Optics Express

J. H. Lee, Y-G. Han, S. B. Lee, and C. H. Kim, "Raman amplification-based WDM-PON architecture with centralized Raman pump-driven, spectrum-sliced erbium ASE and polarization-insensitive EAMs," Optics Express 14, 9036-9041 (2006).
[CrossRef] [PubMed]

Other

I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, "10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification," presented at Eur. Conf. Optical Communication (ECOC2006), Sep. 2006, We3.P.166.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, "A hybrid-amplified PON with 75-nm downstream band-with, 60 km reach, 1:64 split and multiple video services," presented at OFC2007/NFOEC, Mar. 2007, OWL2.

C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, S. B. Lee, "Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON," presented at OFC2007/NFOEC, Mar. 2007, JWA82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Proposed bidirectional WDM PON architecture

Fig. 2
Fig. 2

(a) Raman gains, (b) residual Raman pump power and (c) generated ASE power as a function of transmission fiber length. The total output power of Raman pump module was assumed to be 500 mW.

Fig. 3.
Fig. 3.

Calculated input power of upstream signal into receiver and minimum required power for 622 Mb/s and 1.25 Gb/s signal transmission.

Fig. 4.
Fig. 4.

Calculated maximum reach of proposed WDM PON for 622 Mb/s and 1.25 Gb/s signal transmission as a function of Raman pump power. The experimental results for 622 Mb/s signal transmission in [5] were also represented.

Tables (1)

Tables Icon

Table 1. Parameters used in our calculation.

Metrics