Abstract

A hybrid fiber-optic sensor consisting of a long-period fiber grating (LPFG) and a micro extrinsic Fabry-Perot (F-P) interferometric (MEFPI) sensor is proposed and demonstrated for simultaneous measurement of high-temperature and strain. The LPFG written by using high-frequency CO2 laser pulses is used for high-temperature measurement while the MEFPI sensor fabricated by using 157nm F2 laser pulses is used for strain measurement under high temperature. The distinguishing feature of such a hybrid fiber-optic sensor is that it can stand for high temperature of up to 650°C and achieve precise measurement of strain under high temperature conditions simultaneously.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. J. Rao, "In-fiber Bragg grating sensors," Measur. Sci. & Technol. 8, 355-375 (1997).Q1
    [CrossRef]
  2. J. D. C. Jones, "Review of fiber sensor techniques for temperature-strain discrimination," in Proc. OFS-12 (Williamsburg, Virgina, USA., 1997), pp. 36-39.
  3. Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. & Laser. In Eng. 38, 557-566 (2002).
    [CrossRef]
  4. Y. J. Rao, X. K. Zeng, Y. Zhu, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, and I. Bennion, "Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fibre-Bragg-grating/extrinsic Fabry-Rerot sensor system," Chinese Phy. Lett. 18, 643-645, (2001).Q2
    [CrossRef]
  5. Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
    [CrossRef]
  6. E. Udd, Fiber Optic Smart Structures, (Wiley Interscience, 1995), Chap. 2.
  7. Y. J. Rao, Y. P. Wang, Z. L. Ran and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
    [CrossRef]
  8. Y. C. Lee, and S. Ho. Kuo, "Miniature conical transducer realized by excimer laser micro-machining technique," Sensors & Actuators A. 93, 57-62 (2001).Q3
    [CrossRef]
  9. K. Zimmer and R. Bohme, "Precise etching of fused silica for micro-optical applications," Appl. Surface Sci. 243, 415-420 (2005).
    [CrossRef]
  10. J. Z. Li, P. R. Herman, M. Wei, K. P. Chen, J. Ihlemann, G. Marowsky, P. Oesterlin, and B. Burghardt, "High-Resolution F2-Laer Machining of Micro-Optic Components," Proc. SPIE 4637, 228-234 (2002)
    [CrossRef]
  11. X. Sun, L. Zhang, and I. Bennion, "Sensitivity characteristics of long-period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
    [CrossRef]

2006 (1)

Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
[CrossRef]

2005 (1)

K. Zimmer and R. Bohme, "Precise etching of fused silica for micro-optical applications," Appl. Surface Sci. 243, 415-420 (2005).
[CrossRef]

2003 (1)

2002 (2)

J. Z. Li, P. R. Herman, M. Wei, K. P. Chen, J. Ihlemann, G. Marowsky, P. Oesterlin, and B. Burghardt, "High-Resolution F2-Laer Machining of Micro-Optic Components," Proc. SPIE 4637, 228-234 (2002)
[CrossRef]

X. Sun, L. Zhang, and I. Bennion, "Sensitivity characteristics of long-period fiber gratings," J. Lightwave Technol. 20, 255-266 (2002).
[CrossRef]

2001 (2)

Y. C. Lee, and S. Ho. Kuo, "Miniature conical transducer realized by excimer laser micro-machining technique," Sensors & Actuators A. 93, 57-62 (2001).Q3
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, and I. Bennion, "Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fibre-Bragg-grating/extrinsic Fabry-Rerot sensor system," Chinese Phy. Lett. 18, 643-645, (2001).Q2
[CrossRef]

1997 (1)

Y. J. Rao, "In-fiber Bragg grating sensors," Measur. Sci. & Technol. 8, 355-375 (1997).Q1
[CrossRef]

Appl. Surface Sci. (1)

K. Zimmer and R. Bohme, "Precise etching of fused silica for micro-optical applications," Appl. Surface Sci. 243, 415-420 (2005).
[CrossRef]

Chinese Phy. Lett. (1)

Y. J. Rao, X. K. Zeng, Y. Zhu, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, and I. Bennion, "Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fibre-Bragg-grating/extrinsic Fabry-Rerot sensor system," Chinese Phy. Lett. 18, 643-645, (2001).Q2
[CrossRef]

J. Lightwave Technol. (2)

Measur. Sci. & Technol. (1)

Y. J. Rao, "In-fiber Bragg grating sensors," Measur. Sci. & Technol. 8, 355-375 (1997).Q1
[CrossRef]

Opt. Fiber Technol. (1)

Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors," Opt. Fiber Technol. 12, 227-237 (2006).
[CrossRef]

Proc. SPIE (1)

J. Z. Li, P. R. Herman, M. Wei, K. P. Chen, J. Ihlemann, G. Marowsky, P. Oesterlin, and B. Burghardt, "High-Resolution F2-Laer Machining of Micro-Optic Components," Proc. SPIE 4637, 228-234 (2002)
[CrossRef]

Sensors & Actuators A. (1)

Y. C. Lee, and S. Ho. Kuo, "Miniature conical transducer realized by excimer laser micro-machining technique," Sensors & Actuators A. 93, 57-62 (2001).Q3
[CrossRef]

Other (3)

E. Udd, Fiber Optic Smart Structures, (Wiley Interscience, 1995), Chap. 2.

J. D. C. Jones, "Review of fiber sensor techniques for temperature-strain discrimination," in Proc. OFS-12 (Williamsburg, Virgina, USA., 1997), pp. 36-39.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion, "Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system," Opt. & Laser. In Eng. 38, 557-566 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SEM micrograph of the square hole fabricated on the fiber end

Fig. 2.
Fig. 2.

Photograph of a MEFPI cavity taken from an arc-fusion splicing machine

Fig. 3.
Fig. 3.

Experimental set-up of the hybrid LPFG/MEFPI sensor

Fig. 4.
Fig. 4.

Reflective spectrum of the MEFPI cavity

Fig. 5.
Fig. 5.

Mixed spectrum of the MEFPI cavity and the LPFG

Fig. 6.
Fig. 6.

High temperature response of the LPFG

Fig. 7.
Fig. 7.

High temperature response of the MEFPI

Fig. 8.
Fig. 8.

Strain response of the MEFPI at 500°C

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ = ( 4 π λ p ) n 0 l = kl λ p = 2 m = 0 , ± 1 , ± 2
ϕ ' = kl ' λ ' p = 2 m = 0 , ± 1 , ± 2
ε = K F P l Δ l l = K F P l ( l ' l ) l = K F P l l ( λ ' p λ p ) ( λ p l ) = ( K F P l λ P ) Δ λ p = K ( F P ) ε Δ λ p
Δ T = K ( LPFG ) T Δλ
ε = K ( F P ) ε Δ λ p + K ( F P ) T Δ T

Metrics