Abstract

Optically injected semiconductor laser under period-one oscillation is investigated as a source for photonic microwave transmission over fiber. The period-one nonlinear dynamics of an optically injected laser is studied for the purpose of minimizing the microwave power penalty induced by chromatic dispersion. Over a large range of injection strengths and frequency detunings, we first obtain the mapping of the period-one oscillation characteristics, including the microwave frequency, the microwave power, and the single sideband (SSB) characteristics of the optical spectrum. By accounting for the fiber chromatic dispersion, we calculate its effect on the optical spectrum and the associated microwave power penalty. A mapping of the minimum microwave power deliverable after the maximum penalty is obtained. The system is shown to be least susceptible to the penalty when operated under strong injection with the frequency detuned above the Hopf bifurcation line. Microwave frequency beyond six times the relaxation resonance frequency can be effectively transmitted.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
    [CrossRef]
  2. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
    [CrossRef]
  3. A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
    [CrossRef]
  4. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18, 1355–1363 (2000).
    [CrossRef]
  5. D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
    [CrossRef]
  6. C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
    [CrossRef]
  7. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
    [CrossRef]
  8. U. Gliese, “Multi-functional fibre-optic microwave links,” Opt. Quantum Electron. 30, 1005–1019 (1998).
    [CrossRef]
  9. L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop,” J. Lightwave Technol. 21, 511–520 (2003).
    [CrossRef]
  10. M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171, 159–169 (1999).
    [CrossRef]
  11. J. Han, B. J. Seo, Y. Han, B. Jalali, and H. R. Fetterman, “Reduction of fiber chromatic dispersion effects in fiber-wireless and photonic time-stretching system using polymer modulators,” J. Lightwave Technol. 21, 1504–1509 (2003).
    [CrossRef]
  12. D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8, 578–580 (1996).
    [CrossRef]
  13. K. Sato, “Semiconductor light sources for 40-Gb/s transmission systems,” J. Lightwave Tech-nol. 20, 2035–2043 (2002).
    [CrossRef]
  14. K. S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
    [CrossRef]
  15. K. E. Razavi and P. A. Davies, “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc. Optoelectron. 145, 159–163 (1998).
    [CrossRef]
  16. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16, 1942–1944 (2004).
    [CrossRef]
  17. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
    [CrossRef] [PubMed]
  18. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” SPIE 6468, 646811 (2007).
    [CrossRef]
  19. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
    [CrossRef]
  20. S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42, 699–705 (2006).
    [CrossRef]
  21. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
    [CrossRef]
  22. T. B. Simpson, “Phase-locked microwave-frequency modulations in optically-injected laser diodes,” Opt. Commun. 170, 93–98 (1999).
    [CrossRef]
  23. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
    [CrossRef]
  24. A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 15, 852–854 (2003).
    [CrossRef]
  25. A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
    [CrossRef]
  26. L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
    [CrossRef]
  27. P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33, 1582–1591 (1997).
    [CrossRef]
  28. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
    [CrossRef]
  29. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
    [CrossRef]
  30. J. M. Liu, Photonic Devices. Cambridge (2005).
  31. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
    [CrossRef]
  32. T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215, 135–151 (2003).
    [CrossRef]
  33. A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
    [CrossRef]
  34. T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
    [CrossRef]
  35. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
    [CrossRef]
  36. S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
    [CrossRef]
  37. W. A. van der Graaf, A. M. Levine, and D. Lenstra, “Diode lasers locked to noisy injection,” IEEE J. Quantum Electron. 33, 434–442 (1997).
    [CrossRef]
  38. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
    [CrossRef]
  39. S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999).
    [CrossRef]
  40. T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
    [CrossRef] [PubMed]
  41. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Optical single sideband modulation using an injection-locked semiconductor laser as an optical filter,” Intl. Topical Meeting on Microwave Photonics, 223–226 (2003).
  42. S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
    [CrossRef]

2007 (1)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” SPIE 6468, 646811 (2007).
[CrossRef]

2006 (3)

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42, 699–705 (2006).
[CrossRef]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

2005 (1)

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[CrossRef]

2004 (5)

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16, 1942–1944 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

2003 (6)

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 15, 852–854 (2003).
[CrossRef]

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215, 135–151 (2003).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Optical single sideband modulation using an injection-locked semiconductor laser as an optical filter,” Intl. Topical Meeting on Microwave Photonics, 223–226 (2003).

L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop,” J. Lightwave Technol. 21, 511–520 (2003).
[CrossRef]

J. Han, B. J. Seo, Y. Han, B. Jalali, and H. R. Fetterman, “Reduction of fiber chromatic dispersion effects in fiber-wireless and photonic time-stretching system using polymer modulators,” J. Lightwave Technol. 21, 1504–1509 (2003).
[CrossRef]

2002 (3)

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
[CrossRef]

K. Sato, “Semiconductor light sources for 40-Gb/s transmission systems,” J. Lightwave Tech-nol. 20, 2035–2043 (2002).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

2001 (1)

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
[CrossRef]

2000 (2)

1999 (5)

S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999).
[CrossRef]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

T. B. Simpson, “Phase-locked microwave-frequency modulations in optically-injected laser diodes,” Opt. Commun. 170, 93–98 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171, 159–169 (1999).
[CrossRef]

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[CrossRef]

1998 (3)

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

K. E. Razavi and P. A. Davies, “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc. Optoelectron. 145, 159–163 (1998).
[CrossRef]

U. Gliese, “Multi-functional fibre-optic microwave links,” Opt. Quantum Electron. 30, 1005–1019 (1998).
[CrossRef]

1997 (7)

K. S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33, 1582–1591 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

W. A. van der Graaf, A. M. Levine, and D. Lenstra, “Diode lasers locked to noisy injection,” IEEE J. Quantum Electron. 33, 434–442 (1997).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

1996 (3)

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
[CrossRef] [PubMed]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8, 578–580 (1996).
[CrossRef]

1993 (1)

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Abedin, K. S.

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171, 159–169 (1999).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Alsing, P. M.

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
[CrossRef] [PubMed]

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 15, 852–854 (2003).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

Barry, L. P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 15, 852–854 (2003).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

Chan, S. C.

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” SPIE 6468, 646811 (2007).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42, 699–705 (2006).
[CrossRef]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

Choi, W. Y.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16, 1942–1944 (2004).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Optical single sideband modulation using an injection-locked semiconductor laser as an optical filter,” Intl. Topical Meeting on Microwave Photonics, 223–226 (2003).

Dagli, N.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[CrossRef]

Davies, P. A.

K. E. Razavi and P. A. Davies, “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc. Optoelectron. 145, 159–163 (1998).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8, 578–580 (1996).
[CrossRef]

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

Erneux, T.

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
[CrossRef] [PubMed]

Fetterman, H. R.

Foing, J. P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33, 1582–1591 (1997).
[CrossRef]

Gavrielides, A.

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[CrossRef]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
[CrossRef] [PubMed]

Gliese, U.

U. Gliese, “Multi-functional fibre-optic microwave links,” Opt. Quantum Electron. 30, 1005–1019 (1998).
[CrossRef]

Graaf, W. A. van der

W. A. van der Graaf, A. M. Levine, and D. Lenstra, “Diode lasers locked to noisy injection,” IEEE J. Quantum Electron. 33, 434–442 (1997).
[CrossRef]

Han, J.

Han, Y.

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Hwang, S. K.

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” SPIE 6468, 646811 (2007).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

Hyodo, M.

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171, 159–169 (1999).
[CrossRef]

Jalali, B.

Johansson, L. A.

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 15, 852–854 (2003).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

Kovanis, V.

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
[CrossRef] [PubMed]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999).
[CrossRef]

Lee, K. S.

K. S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

Lenstra, D.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999).
[CrossRef]

W. A. van der Graaf, A. M. Levine, and D. Lenstra, “Diode lasers locked to noisy injection,” IEEE J. Quantum Electron. 33, 434–442 (1997).
[CrossRef]

Levine, A. M.

W. A. van der Graaf, A. M. Levine, and D. Lenstra, “Diode lasers locked to noisy injection,” IEEE J. Quantum Electron. 33, 434–442 (1997).
[CrossRef]

Liang, D. H.

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

Lim, C.

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18, 1355–1363 (2000).
[CrossRef]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8, 578–580 (1996).
[CrossRef]

Liu, H. F.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

Liu, J. M.

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” SPIE 6468, 646811 (2007).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42, 699–705 (2006).
[CrossRef]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[CrossRef]

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

J. M. Liu, Photonic Devices. Cambridge (2005).

Lowery, A. J.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

Marcenac, D. D.

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

Moodie, D. G.

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

Nesset, D.

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

Nirmalathas, A.

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18, 1355–1363 (2000).
[CrossRef]

NÖel, L.

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

Novak, D.

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery,” J. Lightwave Technol. 18, 1355–1363 (2000).
[CrossRef]

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Onodera, N.

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171, 159–169 (1999).
[CrossRef]

Razavi, K. E.

K. E. Razavi and P. A. Davies, “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc. Optoelectron. 145, 159–163 (1998).
[CrossRef]

Ryu, H. S.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16, 1942–1944 (2004).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Optical single sideband modulation using an injection-locked semiconductor laser as an optical filter,” Intl. Topical Meeting on Microwave Photonics, 223–226 (2003).

Saboureau, P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33, 1582–1591 (1997).
[CrossRef]

Sato, K.

K. Sato, “Semiconductor light sources for 40-Gb/s transmission systems,” J. Lightwave Tech-nol. 20, 2035–2043 (2002).
[CrossRef]

Schanne, P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33, 1582–1591 (1997).
[CrossRef]

Seeds, A. J.

Seo, B. J.

Seo, Y. K.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16, 1942–1944 (2004).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Optical single sideband modulation using an injection-locked semiconductor laser as an optical filter,” Intl. Topical Meeting on Microwave Photonics, 223–226 (2003).

Shu, C.

K. S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

Simpson, T. B.

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215, 135–151 (2003).
[CrossRef]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

T. B. Simpson, “Phase-locked microwave-frequency modulations in optically-injected laser diodes,” Opt. Commun. 170, 93–98 (1999).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[CrossRef]

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Smith, G. H.

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
[CrossRef]

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Wake, D.

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8, 578–580 (1996).
[CrossRef]

Waterhouse, R.

Waterhouse, R. B.

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

Westbrook, L. D.

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999).
[CrossRef]

Yoffe, G.

Appl. Phys. Lett. (1)

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

IEE Proc. Optoelectron. (1)

K. E. Razavi and P. A. Davies, “Semiconductor laser sources for the generation of millimetre-wave signals,” IEE Proc. Optoelectron. 145, 159–163 (1998).
[CrossRef]

IEEE J. Quantum Electron. (7)

K. S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

W. A. van der Graaf, A. M. Levine, and D. Lenstra, “Diode lasers locked to noisy injection,” IEEE J. Quantum Electron. 33, 434–442 (1997).
[CrossRef]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[CrossRef]

S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron. 42, 699–705 (2006).
[CrossRef]

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33, 1582–1591 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 15, 852–854 (2003).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photon. Technol. Lett. 16, 1942–1944 (2004).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, “Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,” IEEE Photon. Technol. Lett. 8, 578–580 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (5)

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, “Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser,” IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
[CrossRef]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).
[CrossRef]

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[CrossRef]

L. NÖel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech. 45, 1416–1423 (1997).
[CrossRef]

Intl. Topical Meeting on Microwave Photonics (1)

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Optical single sideband modulation using an injection-locked semiconductor laser as an optical filter,” Intl. Topical Meeting on Microwave Photonics, 223–226 (2003).

J. Appl. Phys. (1)

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

J. Lightwave Tech-nol. (1)

K. Sato, “Semiconductor light sources for 40-Gb/s transmission systems,” J. Lightwave Tech-nol. 20, 2035–2043 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (6)

M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal,” Opt. Commun. 171, 159–169 (1999).
[CrossRef]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999).
[CrossRef]

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215, 135–151 (2003).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, “Analytical stability boundaries for a semiconductor laser subject to optical injection,” Opt. Commun. 136, 253–256 (1997).
[CrossRef]

T. B. Simpson, “Phase-locked microwave-frequency modulations in optically-injected laser diodes,” Opt. Commun. 170, 93–98 (1999).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (2)

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, “Millimetre-wave fibre-wireless transmission systems with reduced effects of fibre chromatic dispersion,” Opt. Quantum Electron. 30, 1021–1031 (1998).
[CrossRef]

U. Gliese, “Multi-functional fibre-optic microwave links,” Opt. Quantum Electron. 30, 1005–1019 (1998).
[CrossRef]

Phys. Rev. A. (1)

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A. 53, 4372–4380 (1996).
[CrossRef] [PubMed]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

SPIE (1)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” SPIE 6468, 646811 (2007).
[CrossRef]

Other (1)

J. M. Liu, Photonic Devices. Cambridge (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the simulated setup. ML: master laser; SL: slave laser; OI: optical isolator; M: mirror; BS: beam splitter; F: fiber; FC: fiber coupler; PD: photodiode; PSA: power spectrum analyzer; and OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

Optical spectrum with the frequency offset to the free-running slave laser frequency. The injection frequency detuning is kept constant at f i = 20 GHz as indicated by the arrows. The injection strength ξi is varied to obtain different states: (a) stable locking (ξi = 0.35); (b) SSB period-one (ξi = 0.29); (c) DSB period-one (ξi = 0.06); and (d) four-wave mixing (ξi = 0.01).

Fig. 3.
Fig. 3.

Fundamental microwave frequency f 0.

Fig. 4.
Fig. 4.

Mapping of the fundamental frequency f 0.

Fig. 5.
Fig. 5.

Fundamental and second harmonic microwave power P f 0 (closed symbols) and P 2f 0 (open symbols) as the generated microwave frequency f 0 is tuned. Tuning is achieved by varying ξi while keeping fi constant at 40 GHz (circles), 30 GHz (triangles), and 20 GHz (squares), respectively.

Fig. 6.
Fig. 6.

Mapping of the fundamental microwave power P f 0 generated before transmitting over fiber. All microwave powers are normalized to the maximum power obtained at (ξi,f i) = (0.095,5 GHz).

Fig. 7.
Fig. 7.

Fundamental microwave power P f 0 generated after fiber propagation. The input period-one states are (a) SSB and (b) DSB, where (ξi,f i) = (0.29, 20 GHz) and (0.06, 20 GHz), respectively.

Fig. 8.
Fig. 8.

Relative magnitudes of the optical frequency components as the generated microwave frequency f 0 is tuned. Tuning is achieved by varying ξi while keeping /i constant at 30 GHz. The magnitudes are normalized to the free-running field amplitude |A 0| of the slave laser.

Fig. 9.
Fig. 9.

Mapping of the sideband rejection ratio R.

Fig. 10.
Fig. 10.

Mapping of the worst case P f 0 when the dispersion-induced power penalty is considered.

Fig. 11.
Fig. 11.

Relative frequency difference Δf/f 0. Δf is the frequency difference between the period-one component f i - f 0 and the shifted cavity resonance f s.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dA d t = [ γ c 2 + i ( ω 0 ω c ) ] A + Γ 2 ( 1 i b ) gA + η A i e i Ω i t
d N d t = J ed γ s N gS
S = 2 0 n 2 ħ ω 0 A 2
g = γ c Γ + γ n N N 0 S 0 γ p S S 0 Γ S 0
d a r d t = 1 2 [ γ c γ n γ s J ˜ ñ γ p ( a r 2 + a i 2 1 ) ] ( a r + ba i ) + ξ i γ c cos Ω i t
d a i d t = 1 2 [ γ c γ n γ s J ˜ ñ γ p ( a r 2 + a i 2 1 ) ] ( b a r + a i ) + ξ i γ c sin Ω i t
d ñ d t = [ γ s + γ n ( a r 2 + a i 2 ) ñ γ s J ˜ ( a r 2 + a i 2 1 ) ]
+ γ s γ p γ c J ˜ ( a r 2 + a i 2 ) ( a r 2 + a i 2 1 )
ϕ ( ω ) = λ 2 l D λ 4 πc ( ω ω 0 ) 2
f s = Γ 4 π b g γ c Γ
Δ f = f i f 0 f s .

Metrics