Abstract

For continuous millimeter and terahertz-wave applications, a two-mode optical signal generation technique that uses two arrayed waveguide gratings and two optical switch units is presented. In addition to easy and fast operation, this scheme offers broadband frequency tunability and high signal purity with a low spurious mode level. Mode spacing, which corresponds to the frequency of the generated MM/THz-wave signal after photomixing, was successfully swept in the range of 200 ∼ 550 GHz and the optical spurious mode suppression ratio higher than 25 dBc was achieved. In addition, spurious modes characteristics were investigated by using second harmonic generation (SHG) autocorrelation methods for several frequencies.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Hirata, M. Harada, and T. Nagatsuma, "120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals," IEEE J. Lightwave Technol. 21, 2145-2153 (2003).
    [CrossRef]
  2. J. W. Waters, "Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere," Proceeding of the IEEE 80, 1679-1701 (1992).
    [CrossRef]
  3. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," J. Sel. Top Quantum Electron. 2, 679-692 (1996).
    [CrossRef]
  4. H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, "Photonic generation of continous THz wave using uni-traveling-carrier photodiode," IEEE J. Lightwave Technol. 23, 4016-4021 (2005).
    [CrossRef]
  5. L. A. Johansson and A. J. Seeds, "Fiber-intergrated heterodyne optical injection phase-lock loop," Tech. Dig. International Microwave Symp., 1737 (2000).
  6. H.-J. Song, J. S. Lee, and J.-I. Song, "Error-free simultaneous all-optical frequency upconvresion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
    [CrossRef]
  7. K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, "Active mode locking at 50 GHz repetition frequency by half-frequency modulation of monolithic semiconductor lasers integrated with electro-absorption modulators," Appl. Phys. Lett. 69, 2626-2628 (1996).
    [CrossRef]
  8. T. Yamamoto, H. Takara, and S. Kawanishi, "270-360 GHz tunable beat signal light generator for photonic local oscillator," Electron. Lett. 38, 795-797 (2002).
    [CrossRef]
  9. A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, "Low phase noise photonic millimeter-wave generation using an AWG integrated with a 3-dB combiner," IEICE Trans. Electron.E 88-C, 1458-1464 (2005).
    [CrossRef]
  10. T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, "Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems," IEEE Photon. Technol. Lett. 17,1274-1276 (2005).
    [CrossRef]
  11. S. Fukushima, C.F.C. Silva, Y. Muramoto, and A. J. Seed, "Using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," IEEE J. Lightwave Technol. 21, 3043-3051 (2003).
    [CrossRef]

2005

H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, "Photonic generation of continous THz wave using uni-traveling-carrier photodiode," IEEE J. Lightwave Technol. 23, 4016-4021 (2005).
[CrossRef]

H.-J. Song, J. S. Lee, and J.-I. Song, "Error-free simultaneous all-optical frequency upconvresion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
[CrossRef]

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, "Low phase noise photonic millimeter-wave generation using an AWG integrated with a 3-dB combiner," IEICE Trans. Electron.E 88-C, 1458-1464 (2005).
[CrossRef]

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, "Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems," IEEE Photon. Technol. Lett. 17,1274-1276 (2005).
[CrossRef]

2003

S. Fukushima, C.F.C. Silva, Y. Muramoto, and A. J. Seed, "Using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," IEEE J. Lightwave Technol. 21, 3043-3051 (2003).
[CrossRef]

A. Hirata, M. Harada, and T. Nagatsuma, "120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals," IEEE J. Lightwave Technol. 21, 2145-2153 (2003).
[CrossRef]

2002

T. Yamamoto, H. Takara, and S. Kawanishi, "270-360 GHz tunable beat signal light generator for photonic local oscillator," Electron. Lett. 38, 795-797 (2002).
[CrossRef]

1996

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," J. Sel. Top Quantum Electron. 2, 679-692 (1996).
[CrossRef]

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, "Active mode locking at 50 GHz repetition frequency by half-frequency modulation of monolithic semiconductor lasers integrated with electro-absorption modulators," Appl. Phys. Lett. 69, 2626-2628 (1996).
[CrossRef]

1992

J. W. Waters, "Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere," Proceeding of the IEEE 80, 1679-1701 (1992).
[CrossRef]

Appl. Phys. Lett.

K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, "Active mode locking at 50 GHz repetition frequency by half-frequency modulation of monolithic semiconductor lasers integrated with electro-absorption modulators," Appl. Phys. Lett. 69, 2626-2628 (1996).
[CrossRef]

E

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, "Low phase noise photonic millimeter-wave generation using an AWG integrated with a 3-dB combiner," IEICE Trans. Electron.E 88-C, 1458-1464 (2005).
[CrossRef]

Electron. Lett.

T. Yamamoto, H. Takara, and S. Kawanishi, "270-360 GHz tunable beat signal light generator for photonic local oscillator," Electron. Lett. 38, 795-797 (2002).
[CrossRef]

IEEE J. Lightwave Technol.

A. Hirata, M. Harada, and T. Nagatsuma, "120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals," IEEE J. Lightwave Technol. 21, 2145-2153 (2003).
[CrossRef]

H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, "Photonic generation of continous THz wave using uni-traveling-carrier photodiode," IEEE J. Lightwave Technol. 23, 4016-4021 (2005).
[CrossRef]

S. Fukushima, C.F.C. Silva, Y. Muramoto, and A. J. Seed, "Using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," IEEE J. Lightwave Technol. 21, 3043-3051 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, "Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems," IEEE Photon. Technol. Lett. 17,1274-1276 (2005).
[CrossRef]

H.-J. Song, J. S. Lee, and J.-I. Song, "Error-free simultaneous all-optical frequency upconvresion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
[CrossRef]

J. Sel. Top Quantum Electron.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," J. Sel. Top Quantum Electron. 2, 679-692 (1996).
[CrossRef]

Proceeding of the IEEE

J. W. Waters, "Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere," Proceeding of the IEEE 80, 1679-1701 (1992).
[CrossRef]

Other

L. A. Johansson and A. J. Seeds, "Fiber-intergrated heterodyne optical injection phase-lock loop," Tech. Dig. International Microwave Symp., 1737 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic diagram of the two-mode heterodyning system with an AWG and (b), (c) optical spectra at each node (OFCG: optical frequency comb generator)

Fig. 2.
Fig. 2.

(a). Schematic diagram of the system with two AWGs and (b) optical and electrical spectra before and after photomixing

Fig. 3.
Fig. 3.

Experiment setup (LD: laser diode. PM: optical phase modulator. DDF: dispersion decreasing fiber. AWG: arrayed waveguide grating. OSW: optical switch. and PSS: polarization state stabilizer)

Fig. 4.
Fig. 4.

Measured OSMSR with one AWG (dotted line) and two AWGs (solid line)

Fig. 5.
Fig. 5.

Measured optical spectra of two-mode signal having a mode-spacing of 525 GHz with (a) one and (b) two AWGs

Fig. 6.
Fig. 6.

Measured SHG autocorrelation traces for several mode-spacing frequencies with (a) one and (b) two AWGs

Metrics