Abstract

We demonstrate a novel cascaded configuration of optically injection-locked (COIL) VCSELs, which enables a wide and tailorable direct modulation bandwidth. Up to 66 GHz bandwidth is achieved using VCSELs with an original, free-running 10 GHz bandwidth. Different configurations of cascading are discussed in detail with the focus on optimizing the modulation bandwidth. We also discuss scaling capability of this technique to achieve tailorable modulation response.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25-27 (1997).
    [CrossRef]
  2. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke and L. Backbom, "30GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55μm wavelength," Electron. Lett. 33, 488-489 (1997).
    [CrossRef]
  3. K. Noguchi, O. Mitomi and H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators," J. Lightwave Technol. 16, 615-619 (1998).
    [CrossRef]
  4. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
    [CrossRef] [PubMed]
  5. E. K. Lau, H. -K. Sung, and M. C. Wu, "Ultra-High, 72 GHz Resonance Frequency and 44 GHz Bandwidth of Injection-Locked 1.55-µm DFB Lasers," presented at the Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, Anaheim, Calif., USA, 5-10 March 2006.
  6. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54, 788-796 (2006).
    [CrossRef]
  7. X. Zhao, C.J. Chang-Hasnain, W. Hofmann and M.-C. Amann, "Modulation Efficiency Enhancement of 1.55-μm Injection-Locked VCSELs," in conference digest of IEEE 20th International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New York 2006), pp. 125-126.
    [CrossRef]
  8. X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu and C. J. Chang-Hasnain, "Cascaded Injection-Locked 1.55-µm VCSELs for High-Speed Transmission," presented at Conference on Lasers and Electro-Optics, postdeadline session, Baltimore, USA, 6-11 May, 2007.
  9. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu and M. C. Amann, "High speed (> 11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42, 976 (2006).
    [CrossRef]

2006 (2)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54, 788-796 (2006).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu and M. C. Amann, "High speed (> 11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42, 976 (2006).
[CrossRef]

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

1998 (1)

1997 (2)

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke and L. Backbom, "30GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55μm wavelength," Electron. Lett. 33, 488-489 (1997).
[CrossRef]

Electron. Lett. (2)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke and L. Backbom, "30GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55μm wavelength," Electron. Lett. 33, 488-489 (1997).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu and M. C. Amann, "High speed (> 11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42, 976 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54, 788-796 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Other (3)

E. K. Lau, H. -K. Sung, and M. C. Wu, "Ultra-High, 72 GHz Resonance Frequency and 44 GHz Bandwidth of Injection-Locked 1.55-µm DFB Lasers," presented at the Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, Anaheim, Calif., USA, 5-10 March 2006.

X. Zhao, C.J. Chang-Hasnain, W. Hofmann and M.-C. Amann, "Modulation Efficiency Enhancement of 1.55-μm Injection-Locked VCSELs," in conference digest of IEEE 20th International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New York 2006), pp. 125-126.
[CrossRef]

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu and C. J. Chang-Hasnain, "Cascaded Injection-Locked 1.55-µm VCSELs for High-Speed Transmission," presented at Conference on Lasers and Electro-Optics, postdeadline session, Baltimore, USA, 6-11 May, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A schematic explaining the idea of cascaded optical injection locking (COIL).

Fig. 2.
Fig. 2.

Experimental setup. Orange lines are optical paths, while blue lines are electrical paths. ML: master laser, PC: polarization controller, OSA: optical spectrum analyzer, VNA: vector network analyzer, PD: photodetector.

Fig. 3.
Fig. 3.

Frequency response of a free-running VCSEL at various biasing levels.

Fig. 4.
Fig. 4.

Frequency response of COIL. The first modulated VCSEL is red-detuned to provide a flat response while the second VCSEL is locked at a longer wavelength to extend the bandwidth. 3-dB bandwidth of 66 GHz is obtained.

Fig. 5.
Fig. 5.

Frequency response of COIL. (a) The first modulated VCSEL is blue-detuned. Cascading effect is clearly shown by the two resonance peaks. (b) The first modulated VCSEL is red-detuned. A flat response with 3-dB bandwidth of 50 GHz is achieved.

Fig. 6.
Fig. 6.

Schematic of a multiple COIL transmitter with optical spectra and frequency response shown after each cascaded stage. The modulation signal can be applied directly to the first slave laser only or to all the slave lasers simultaneously. (ML: master laser, SL: slave laser)

Metrics