Abstract

We report on the operation of a highly sensitive terahertz imaging system relying on a planar metallic plasmonic crystal as a terahertz surface plasmon resonant (THz-SPR) sensor. The terahertz imaging is based on the resonantly enhanced transmission phenomenon of a periodically perforated metal film. The detection sensitivity and the imaging contrast for small amounts of substance are considerably better than those of the conventional terahertz transmission imaging without a THz-SPR sensor. As a demonstration, a high contrast image of a fingerprint recorded on a thin film can be achieved by using this system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauwe, H. G. Roskos and S. Czasch, "Continuous-wave all-optoelectronic terahertz imaging," Appl. Phys. Lett. 80, 3003-3005 (2002).
    [CrossRef]
  2. S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, N. Miyoshi, "Terahertz imaging diagnostics of cancer tissues with a chemometrics technique," Appl. Phys. Lett. 90, 41102 (2007).
    [CrossRef]
  3. K Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, and M. Hangyo, "Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy," Jpn. J. Appl. Phys. 43, L414-L417 (2004).
    [CrossRef]
  4. N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, "Compact continuous-wave subterahertz system for inspection applications," Appl. Phys. Lett. 86, 54105 (2005).
    [CrossRef]
  5. H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 14, 415 (2006).
    [CrossRef] [PubMed]
  6. K. Kawase, Y. Ogawa and Y. Watanabe, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  7. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995).
    [CrossRef] [PubMed]
  8. D. Mittelman, Sensing with Terahertz radiation, (Springer, Berlin, 2002).
  9. M. Nagel, P, H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
    [CrossRef]
  10. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  11. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  12. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun 225, 331-336 (2003).
    [CrossRef]
  13. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210-1212 (2005).
    [CrossRef] [PubMed]
  14. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, "Terahertz surface-wave resonant sensor with a metal hole array," Opt. Lett. 31, 1118-1120 (2006).
    [CrossRef] [PubMed]
  15. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
    [CrossRef]
  16. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]

2007 (1)

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, N. Miyoshi, "Terahertz imaging diagnostics of cancer tissues with a chemometrics technique," Appl. Phys. Lett. 90, 41102 (2007).
[CrossRef]

2006 (2)

2005 (2)

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210-1212 (2005).
[CrossRef] [PubMed]

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, "Compact continuous-wave subterahertz system for inspection applications," Appl. Phys. Lett. 86, 54105 (2005).
[CrossRef]

2004 (2)

K Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, and M. Hangyo, "Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy," Jpn. J. Appl. Phys. 43, L414-L417 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

2003 (3)

K. Kawase, Y. Ogawa and Y. Watanabe, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).
[CrossRef] [PubMed]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun 225, 331-336 (2003).
[CrossRef]

2002 (2)

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauwe, H. G. Roskos and S. Czasch, "Continuous-wave all-optoelectronic terahertz imaging," Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

M. Nagel, P, H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

2001 (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

1995 (1)

Appl. Phys. Lett. (5)

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, "Compact continuous-wave subterahertz system for inspection applications," Appl. Phys. Lett. 86, 54105 (2005).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauwe, H. G. Roskos and S. Czasch, "Continuous-wave all-optoelectronic terahertz imaging," Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, N. Miyoshi, "Terahertz imaging diagnostics of cancer tissues with a chemometrics technique," Appl. Phys. Lett. 90, 41102 (2007).
[CrossRef]

M. Nagel, P, H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, and M. Hangyo, "Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy," Jpn. J. Appl. Phys. 43, L414-L417 (2004).
[CrossRef]

Opt. Commun (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun 225, 331-336 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Other (2)

D. Mittelman, Sensing with Terahertz radiation, (Springer, Berlin, 2002).

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the terahertz time-domain spectroscopic imaging system with metallic plasmonic crystals.

Fig. 2
Fig. 2

(a) Measured zeroth order transmission spectra for MPC1 (solid black line), MPC2 (dashed blue line) and MPC3 (dotted red line). The geometrical parameters for each MPC are shown in Table 1. (b) Simulated result of the electric field (| E z|) distribution near the MPC

Fig. 3
Fig. 3

Comparison of the transmission spectra of MPC1 between incident beam diameters of about 10 mm (solid black line) and about 2 mm (dashed red line).surface, for the parameters of MPC1.

Fig. 4
Fig. 4

(a) Visible image of the character “R” written in soluble ink on a paper. (b) and (c) THz transmission image with MPC1 (0.40 THz) and MPC2 (1.50 THz). (d) Transmission image without any MPC at 1.50 THz.

Fig. 5
Fig. 5

(a) Photograph of a fingerprint on a polypropylene film. (b) and (c) THz transmission image with MPC3 and without any MPC at 2.09 THz.

Tables (1)

Tables Icon

Table 1. Geometrical parameters of three different MPC’s used in the experiments. The SPP resonant frequencies, transmission peak frequencies and the quality factors are also listed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f SPP = k in + G c 2 π ( ε m + ε d ε m ε d ) 1 2

Metrics