Abstract

The external quantum efficiency of solar cells can be improved by using texturing pyramid- and honeycomb-like structures with minimum reflection. In this study, we investigated the reflection properties of texturing structures through rigorous coupled-wave analysis and the three-dimensional finite-difference time domains (FDTD) method to analyze close-packed texturing structures. We also demonstrate a simple method—combining sub-wavelength-scale monolayer and bilayer polystyrene spheres with a one-step reactive ion etching process—to fabricate optimized pyramid- and honeycomb-shaped antireflection structures, respectively. Thus, sub-wavelength pyramidal and honeycomb-like structures displaying low reflectance were obtained readily without the need for any lithography equipment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. M. Dharmadasa, "Third generation multi-layer tandem solar cells for achieving high conversion efficiencies," Sol. Energy Mater. Sol. Cells 85, 293-300 (2005).
    [CrossRef]
  2. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, "Solar cell efficiency tables," Prog. Photovoltaics 11, 39-45 (2003).
    [CrossRef]
  3. S. Siebentritt, "Wide gap chalcopyrites: material properties and solar cells," Thin Solid Films. 403-404,1-8 (2002).
    [CrossRef]
  4. E. D. Palik, in Handbook of Optical Constants of Solids, (Academic Press, 1998).
  5. H. A. Macleod, in Thin-Film Optical Filters, 2nd Ed., (Adam Hilger Ltd., 1986).
    [CrossRef]
  6. B. Kumar, T. B. Pandian, E. Sreekiran, and S. Narayanan, "Benefit of dual layer silicon nitride antireflection coating," in Proceedings of IEEE Conference on Photovoltaic Specialists, 1205-1208 (2005).
  7. D. H. Macdonald, A. Cuevas, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells," Sol. Energy Mater. Sol. Cells. 80, 227-237 (2004).
  8. J. D. Hylton, A. R. Burger, and W. C. Sinke, "Alkaline etching for reflectance reduction in multicrystalline silicon solar cells," J. Electrochem. Soc. 151, 408-427 (2004).
    [CrossRef]
  9. R. Bilyalov, L. Stalmans, and J. Poortmans, "Comparative analysis of chemically and electrochemically formed porous Si antireflection coating for solar cells," J. Electrochem. Soc. 150, 216-222 (2003).
    [CrossRef]
  10. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, "Antireflection microstructures fabricated upon fluorine-doped SiO2," Opt. Lett. 26, 1642-1644 (2001).
    [CrossRef]
  11. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, "Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff," J. Vac. Sci. Technol. B. 21, 2874-2877 (2003).
    [CrossRef]
  12. S. H. Zaidi, D. S. Ruby, and J. M. Gee, "Characterization of random reactive ion etched-textured silicon solar cells," IEEE Trans Electron Devices 48,1200-1206 (2001).
    [CrossRef]
  13. J. Zhao, A. Wang, and M. A. Green, "19.8% efficient ‘honeycomb’ textured muticrystalline and 24.4% monocrstalline silicon solar cells," Appl. Phys. Lett. 78, 1991-1993 (1998).
    [CrossRef]
  14. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A. 14, 2758-2767 (1997).
    [CrossRef]
  15. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, "Broadband antireflective surface-relief structure for THz optics," Opt. Express 15, 779-789 (2007).
    [CrossRef] [PubMed]
  16. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh and W. H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectron. Eng. 83, 1798-1804 (2006).
    [CrossRef]
  17. A. K. Wong, "Resolution enhancement techniques," The International Society for Optical Engineering (SPIE) (2001).
  18. S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small 2, 458-475 (2006).
    [CrossRef] [PubMed]
  19. J. H. Moon, S. G. Jang, J. M. Lim, and S. M. Yang, "Multiscale nanopatterns templated from two-dimensional assemblies of photoresist particles," Adv. Mater. 17, 2559-2562 (2005).
    [CrossRef]
  20. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, "Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks," Small 1, 439-444, (2005).
    [CrossRef]
  21. D. L. J. Vossen, D. Fific, J. Penninkhof, T. Dillen, A. Polman, and A. Blaaderen, "Combing optical tweezers/ion beam technique to tune colloidal masks for nanolithography," Nano Lett. 5, 1175-1179 (2005).
    [CrossRef] [PubMed]
  22. Y. Zhao, J. Wang, and G. Mao, "Colloidal subwavelength nanostructures for antireflection optical coatings," Opt. Lett. 30, 1885-1887 (2005).
    [CrossRef] [PubMed]
  23. H. Xiao, in Introduction to Semiconductor Manufacturing Technology, (Prentice Hall Inc., 2001).

2007

2006

C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh and W. H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectron. Eng. 83, 1798-1804 (2006).
[CrossRef]

S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small 2, 458-475 (2006).
[CrossRef] [PubMed]

2005

J. H. Moon, S. G. Jang, J. M. Lim, and S. M. Yang, "Multiscale nanopatterns templated from two-dimensional assemblies of photoresist particles," Adv. Mater. 17, 2559-2562 (2005).
[CrossRef]

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, "Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks," Small 1, 439-444, (2005).
[CrossRef]

D. L. J. Vossen, D. Fific, J. Penninkhof, T. Dillen, A. Polman, and A. Blaaderen, "Combing optical tweezers/ion beam technique to tune colloidal masks for nanolithography," Nano Lett. 5, 1175-1179 (2005).
[CrossRef] [PubMed]

Y. Zhao, J. Wang, and G. Mao, "Colloidal subwavelength nanostructures for antireflection optical coatings," Opt. Lett. 30, 1885-1887 (2005).
[CrossRef] [PubMed]

I. M. Dharmadasa, "Third generation multi-layer tandem solar cells for achieving high conversion efficiencies," Sol. Energy Mater. Sol. Cells 85, 293-300 (2005).
[CrossRef]

2004

D. H. Macdonald, A. Cuevas, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells," Sol. Energy Mater. Sol. Cells. 80, 227-237 (2004).

J. D. Hylton, A. R. Burger, and W. C. Sinke, "Alkaline etching for reflectance reduction in multicrystalline silicon solar cells," J. Electrochem. Soc. 151, 408-427 (2004).
[CrossRef]

2003

R. Bilyalov, L. Stalmans, and J. Poortmans, "Comparative analysis of chemically and electrochemically formed porous Si antireflection coating for solar cells," J. Electrochem. Soc. 150, 216-222 (2003).
[CrossRef]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, "Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff," J. Vac. Sci. Technol. B. 21, 2874-2877 (2003).
[CrossRef]

M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, "Solar cell efficiency tables," Prog. Photovoltaics 11, 39-45 (2003).
[CrossRef]

2002

S. Siebentritt, "Wide gap chalcopyrites: material properties and solar cells," Thin Solid Films. 403-404,1-8 (2002).
[CrossRef]

2001

S. H. Zaidi, D. S. Ruby, and J. M. Gee, "Characterization of random reactive ion etched-textured silicon solar cells," IEEE Trans Electron Devices 48,1200-1206 (2001).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, "Antireflection microstructures fabricated upon fluorine-doped SiO2," Opt. Lett. 26, 1642-1644 (2001).
[CrossRef]

1998

J. Zhao, A. Wang, and M. A. Green, "19.8% efficient ‘honeycomb’ textured muticrystalline and 24.4% monocrstalline silicon solar cells," Appl. Phys. Lett. 78, 1991-1993 (1998).
[CrossRef]

1997

L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A. 14, 2758-2767 (1997).
[CrossRef]

Adv. Mater.

J. H. Moon, S. G. Jang, J. M. Lim, and S. M. Yang, "Multiscale nanopatterns templated from two-dimensional assemblies of photoresist particles," Adv. Mater. 17, 2559-2562 (2005).
[CrossRef]

Appl. Phys. Lett.

J. Zhao, A. Wang, and M. A. Green, "19.8% efficient ‘honeycomb’ textured muticrystalline and 24.4% monocrstalline silicon solar cells," Appl. Phys. Lett. 78, 1991-1993 (1998).
[CrossRef]

Electron Devices

S. H. Zaidi, D. S. Ruby, and J. M. Gee, "Characterization of random reactive ion etched-textured silicon solar cells," IEEE Trans Electron Devices 48,1200-1206 (2001).
[CrossRef]

J. Electrochem. Soc.

J. D. Hylton, A. R. Burger, and W. C. Sinke, "Alkaline etching for reflectance reduction in multicrystalline silicon solar cells," J. Electrochem. Soc. 151, 408-427 (2004).
[CrossRef]

R. Bilyalov, L. Stalmans, and J. Poortmans, "Comparative analysis of chemically and electrochemically formed porous Si antireflection coating for solar cells," J. Electrochem. Soc. 150, 216-222 (2003).
[CrossRef]

J. Opt. Soc. Am. A.

L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A. 14, 2758-2767 (1997).
[CrossRef]

J. Vac. Sci. Technol. B.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, "Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff," J. Vac. Sci. Technol. B. 21, 2874-2877 (2003).
[CrossRef]

Microelectron. Eng.

C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh and W. H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectron. Eng. 83, 1798-1804 (2006).
[CrossRef]

Nano Lett.

D. L. J. Vossen, D. Fific, J. Penninkhof, T. Dillen, A. Polman, and A. Blaaderen, "Combing optical tweezers/ion beam technique to tune colloidal masks for nanolithography," Nano Lett. 5, 1175-1179 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Prog. Photovoltaics

M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, "Solar cell efficiency tables," Prog. Photovoltaics 11, 39-45 (2003).
[CrossRef]

Small

S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small 2, 458-475 (2006).
[CrossRef] [PubMed]

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, "Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks," Small 1, 439-444, (2005).
[CrossRef]

Sol. Energy Mater. Sol. Cells

I. M. Dharmadasa, "Third generation multi-layer tandem solar cells for achieving high conversion efficiencies," Sol. Energy Mater. Sol. Cells 85, 293-300 (2005).
[CrossRef]

Sol. Energy Mater. Sol. Cells.

D. H. Macdonald, A. Cuevas, C. Samundsett, D. Ruby, S. Winderbaum and A. Leo, "Texturing industrial multicrystalline silicon solar cells," Sol. Energy Mater. Sol. Cells. 80, 227-237 (2004).

Thin Solid Films.

S. Siebentritt, "Wide gap chalcopyrites: material properties and solar cells," Thin Solid Films. 403-404,1-8 (2002).
[CrossRef]

Other

E. D. Palik, in Handbook of Optical Constants of Solids, (Academic Press, 1998).

H. A. Macleod, in Thin-Film Optical Filters, 2nd Ed., (Adam Hilger Ltd., 1986).
[CrossRef]

B. Kumar, T. B. Pandian, E. Sreekiran, and S. Narayanan, "Benefit of dual layer silicon nitride antireflection coating," in Proceedings of IEEE Conference on Photovoltaic Specialists, 1205-1208 (2005).

A. K. Wong, "Resolution enhancement techniques," The International Society for Optical Engineering (SPIE) (2001).

H. Xiao, in Introduction to Semiconductor Manufacturing Technology, (Prentice Hall Inc., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustrations of (a) the reflection and transmission diffraction orders for incident rays of light upon interaction with a pyramidal structure and (b) the pyramidal structures utilized for rigorous coupled-wave simulation.

Fig. 2.
Fig. 2.

Simulated reflectance spectra of pyramidal silicon structures: periods of (a) 800 and (b) 350 nm; (c) heights ranging from 200 to 800 nm and a fixed period of 350 nm. (d) Average reflectance of pyramidal structures. (e) Average reflectance of cylinders having various duty ratios, as obtained through rigorous coupled-wave simulation.

Fig. 3.
Fig. 3.

Plane waves propagated from 1 μm above the air–silicon interface to the silicon surfaces (a) without pyramidal structure and (b, c) possessing (b) 200- and (c) 500-nm-high pyramidal structures.

Fig 4.
Fig 4.

Schematic illustrations of the (a) two- and (b) one-step etching processes.

Fig. 5
Fig. 5

(a) Close-packed monolayer of 350-nm-diameter polystyrene spheres coated on a silicon substrate. (b) SEM and (c) AFM images of pyramidal structures (period: 350 nm) transferred to silicon. (d) SEM image of pyramidal structures having a period of 200 nm.

Fig. 6
Fig. 6

Top-view and cross-sectional images of the textured profiles obtained after etching for (a) 30, (b) 60, (c) 100, and (d) 150 s using the one-step etching process.

Fig. 7
Fig. 7

(a) Measured reflectance spectra of textured silicon samples prepared using various etching durations. (b) Reflectance and normalized texture areas of etched silicon samples plotted with respect to the etching duration. (c) Reflectance and structure heights of etched silicon samples plotted with respect to the etching duration.

Fig. 8.
Fig. 8.

Pyramidal structures fabricated using templating polystyrene spheres having diameters of (a) 350 and (b) 200 nm. (c) Reflection spectra of pyramidal and honeycomblike structures.

Fig. 9.
Fig. 9.

(a) SEM image of a bilayer of polystyrene spheres. Schematic representations of (b) single-layer and (c) bilayer assemblies of polystyrene spheres. SEM images of textured silicon structures etched using a bilayer of polystyrene spheres as the template and etching durations of (d) 50 and (e) 100 s.

Metrics