Abstract

We propose and investigate a ribbon waveguide for difference-frequency generation of terahertz (THz) wave from infrared light sources. The proposed ribbon waveguide is composed of a nonlinear optic crystal and has a thickness less than the wavelength of the THz wave to support the surface-wave mode in the THz region. By utilizing the waveguide dispersion of the surface-wave mode, the phase matching condition between infrared pump, idler and THz waves can be realized in the collinear configuration. Owing to the weak mode confinement of the THz wave, the absorption coefficient can also be reduced. We design the ribbon waveguide which uses LiNbO3 crystal and discuss the phase-matching condition for DFG of THz wave. Highly efficient THz-wave generation is confirmed by numerical simulations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975).
    [CrossRef]
  2. K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
    [CrossRef]
  3. K. Kawase, H. Minamide, K. Imai, J. Shikata, H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-198 (2002).
    [CrossRef]
  4. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, and Y. C. Huang, "Enhanced terahertz-wave parametric generation and scillation in lithium niobate waveguides at terahertz frequencies," Opt. Lett. 30, 3392-3394 (2005).
    [CrossRef]
  5. T. Ikari, X. Zhang, H. Minamide, and H. Ito, "THz-wave parametric oscillator with a surface emitted configuration," Opt. Express 14, 1604-1610 (2006).
    [CrossRef] [PubMed]
  6. H. Ito, Y. Sasaki, Y. Suzuki, and H. Yokoyama, "Surface-emitted continuous THz-wave generation from PPLN," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2005 Technical Digest (Optical Society of America, Washington, DC, 2005), paper CTuBB1.
  7. M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared and Millimeter Waves 20, 595-604 (1999).
    [CrossRef]
  8. T. Suhara, Y. Avetisyan, and H. Ito, "Theoretical analysis of laterally emitting therahertz-wave generation by difference-frequency generation in channel waveguides," IEEE J. Quantum Electron. 39, 166-171 (2003).
    [CrossRef]
  9. R. E. Collin, Field Theory of Guided Waves, second edition, chap. 11 (IEEE Press, New York, 1991).
  10. W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
    [CrossRef]
  11. A. E. Karbowiak, "New type of waveguide for light and infrared wave," Electron. Lett. 1, 47-48 (1965).
    [CrossRef]
  12. C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadl, "Communication at millimetre-submilllimetre wavelengths using a ceramic ribbon," Nature 46, 584-588 (2000).
    [CrossRef]
  13. C. Yeh, F. Shimabukuro, and P. H. Siegel, "Low-loss terahertz ribbon waveguides," Appl. Opt. 44, 5937-5946 (2005).
    [CrossRef] [PubMed]
  14. E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2102 (1969).
  15. K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2000).
  16. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).
  17. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  18. T. Mizuno, T. Kitoh, M. Itoh, T. Saida, T. Shibata, and Y. Hibino, "Optical spotsize converter using narrow laterally tapered waveguide for planar lightwave circuits," J. Lightwave Technol. 22, 833-839 (2004).
    [CrossRef]
  19. Y. Jeong, J. Nillson, D. B. S. Soh, C. A. Codemard, P. Dupriez, C. Farrell, J. K. Sahu, J. Kim, S. Yoo., D. J. Richardson, and D. N. Payne, "High power single-frequency Yb-doped fiber amplifier," in Optical Fiber Communication Conference and The National Fiber Optic Engineers Conference 2006 Technical Digest (Optical Society of America, Washington, DC, 2006), paper OThJ7.
  20. A. Liem, J. Kimpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28, 1537-1539 (2003).
    [CrossRef] [PubMed]
  21. Z. Ye, J. He, L. Ye, B. Zhao, W. Weng, and H. Lu, "Highly c-axis oriented LiNbO3 thin film grown on SiO2/Si substrates by pulsed laser deposition," Materials Lett. 55, 265-268 (2002).
    [CrossRef]
  22. D. Djukic, T. Izuhara, R. M. Roth, R. M. OsgoodJr., S. Bakhru, and H. Bakhru, "Extremely thin, single-crystal films of LiNbO3 fabricated using localized He+ ion-implantation," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2005 Technical Digest (Optical Society of America, Washington, DC, 2005), paper CMN3, 2005.
  23. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, "Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser," Opt. Lett. 24, 1065-1067 (1999).
    [CrossRef]

2006 (1)

2005 (2)

2004 (1)

2003 (4)

A. Liem, J. Kimpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28, 1537-1539 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

T. Suhara, Y. Avetisyan, and H. Ito, "Theoretical analysis of laterally emitting therahertz-wave generation by difference-frequency generation in channel waveguides," IEEE J. Quantum Electron. 39, 166-171 (2003).
[CrossRef]

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
[CrossRef]

2002 (2)

K. Kawase, H. Minamide, K. Imai, J. Shikata, H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-198 (2002).
[CrossRef]

Z. Ye, J. He, L. Ye, B. Zhao, W. Weng, and H. Lu, "Highly c-axis oriented LiNbO3 thin film grown on SiO2/Si substrates by pulsed laser deposition," Materials Lett. 55, 265-268 (2002).
[CrossRef]

2001 (1)

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

2000 (1)

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadl, "Communication at millimetre-submilllimetre wavelengths using a ceramic ribbon," Nature 46, 584-588 (2000).
[CrossRef]

1999 (2)

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975).
[CrossRef]

1969 (1)

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2102 (1969).

1965 (1)

A. E. Karbowiak, "New type of waveguide for light and infrared wave," Electron. Lett. 1, 47-48 (1965).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435-4437 (2003).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975).
[CrossRef]

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

K. Kawase, H. Minamide, K. Imai, J. Shikata, H. Ito, "Injection-seeded terahertz-wave parametric generator with wide tenability," Appl. Phys. Lett. 80, 195-198 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2102 (1969).

Electron. Lett. (1)

A. E. Karbowiak, "New type of waveguide for light and infrared wave," Electron. Lett. 1, 47-48 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Suhara, Y. Avetisyan, and H. Ito, "Theoretical analysis of laterally emitting therahertz-wave generation by difference-frequency generation in channel waveguides," IEEE J. Quantum Electron. 39, 166-171 (2003).
[CrossRef]

Int. J. Infrared and Millimeter Waves (1)

M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared and Millimeter Waves 20, 595-604 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Materials Lett. (1)

Z. Ye, J. He, L. Ye, B. Zhao, W. Weng, and H. Lu, "Highly c-axis oriented LiNbO3 thin film grown on SiO2/Si substrates by pulsed laser deposition," Materials Lett. 55, 265-268 (2002).
[CrossRef]

Nature (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadl, "Communication at millimetre-submilllimetre wavelengths using a ceramic ribbon," Nature 46, 584-588 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (6)

D. Djukic, T. Izuhara, R. M. Roth, R. M. OsgoodJr., S. Bakhru, and H. Bakhru, "Extremely thin, single-crystal films of LiNbO3 fabricated using localized He+ ion-implantation," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2005 Technical Digest (Optical Society of America, Washington, DC, 2005), paper CMN3, 2005.

Y. Jeong, J. Nillson, D. B. S. Soh, C. A. Codemard, P. Dupriez, C. Farrell, J. K. Sahu, J. Kim, S. Yoo., D. J. Richardson, and D. N. Payne, "High power single-frequency Yb-doped fiber amplifier," in Optical Fiber Communication Conference and The National Fiber Optic Engineers Conference 2006 Technical Digest (Optical Society of America, Washington, DC, 2006), paper OThJ7.

H. Ito, Y. Sasaki, Y. Suzuki, and H. Yokoyama, "Surface-emitted continuous THz-wave generation from PPLN," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2005 Technical Digest (Optical Society of America, Washington, DC, 2005), paper CTuBB1.

R. E. Collin, Field Theory of Guided Waves, second edition, chap. 11 (IEEE Press, New York, 1991).

K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2000).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, 1991).

Supplementary Material (1)

» Media 1: AVI (1032 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

a) Schematic diagram of the DFG of THz wave in a waveguide. (b) Effective refractive index of the THz wave THz required required for the phase matching condition.

Fig. 2:
Fig. 2:

Schematic diagram of the proposed THz ribbon waveguide (a < λ THz ).

Fig. 3:
Fig. 3:

Dispersion relationships of the surface-wave mode of the ribbon waveguide in the THz regime. a = 9.5 μm and b=120 μm.

Fig. 4.
Fig. 4.

Mode profiles of E11y mode of THz wave and infrared pump wave.

Fig. 5.
Fig. 5.

Evolution of the THz wave generated in the LN ribbon waveguide. (a) and (b) show the power distributions of the generated THz wave in y-z and x-z cross-section, respectively. Fig. (c) shows the absolute value of the electric field of the THz wave in the movie.

Fig. 6.
Fig. 6.

(a) Dependence of the conversion efficiency on the THz frequency. Figs. (b) and (c) show the power distribution (y-z cross-section) of the THz wave for f THz=1.0 and 1.45 THz, respectively.

Fig. 7.
Fig. 7.

Power evolution of the generated THz wave along the distance.

Fig. 8.
Fig. 8.

Power of the generated THz wave as a function of the pump power.

Fig. 9.
Fig. 9.

The size of the LN waveguide for the phase matching at 1 THz (solid curve). The absorption coefficient for the corresponding waveguide size is also shown by the dotted curve.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω i + ω THz , and β p = β i + β THz ,
n ̅ THz , required = n ̅ p + ω i ω THz ( n ̅ p n ̅ i ) .
n ̅ THz , required n ̅ IR ( ω P ) + ω i d n ̅ IR d ω ω p = n ̅ IR ( ω P ) + ω p d n ̅ IR d ω ω p ω THZ d n ̅ IR d ω ω p
E y x y z = Au mn x y exp [ j ( ω THz t β mn z ) ] exp [ α mn z ] ,
Δ β = β p β i ( ω i 0 + Δ ω ) β THz ( ω THz 0 Δ ω )
Δ β = Δ ω ω THz c ( d n ̅ IR d ω ω i + d n ̅ THz d ω ω THz ) Δ ω k THz d n ̅ THz d ω ω THz

Metrics