Abstract

– We demonstrate highly compact third-order silicon microring add-drop filters. The microring resonator has a small radius of 2.5 μm and a very large free spectral range of 32 nm at 1.55 μm. Experimental results show a low add-drop crosstalk of around -20 dB. Box-like channel dropping response is demonstrated, and it has a passband of ~ 1 nm (125 GHz), fast rolling-off (slope ~ 0.2 dB/GHz), high out-of-band signal rejection of around 40 dB and a low drop loss. Simulation agrees well with experiments in power transmission, and the group delay is also simulated and the variation is less than 1 ps within the passband. The propagation loss in microring resonators is optimized.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
    [CrossRef]
  2. A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop mutiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
    [CrossRef]
  3. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  4. T. Barwicz, M. A. Popovíc, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
    [CrossRef] [PubMed]
  5. T. Barwicz, M.A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," IEEE J. Lightwave Technol. 24, 2207-2218 (2006).Q1
    [CrossRef]
  6. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006).
    [CrossRef] [PubMed]
  7. M. A. Popovíc, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen and F. X. Kärtner, "Transparent wavelength switching of resonators," in Conference on Lasers and Electro-Optics 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), paper CPDA2.
  8. F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact silicon WDM optical filters with flat-top response for on-chip optical interconnects," in Conference on Lasers and Electro-Optics 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), paper CTuG3.
  9. M. A. Popovíc, C. Manolatou, and M. R. Watts, "Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006).
    [CrossRef] [PubMed]
  10. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications," Opt. Express 15, 7489-7498 (2007).
    [CrossRef] [PubMed]
  11. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).Q2
    [CrossRef]
  12. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15, 10553-10561 (2007).
    [CrossRef] [PubMed]
  13. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," submitted, IEEEJ. Lightwave Technol.Q3
  14. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Compact silicon microring resonators with ultra-low propagation loss in the C band," accepted with revision, Opt. Express 15 (2007).Q4
    [CrossRef] [PubMed]

2007 (3)

2006 (3)

2004 (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

T. Barwicz, M. A. Popovíc, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop mutiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).Q2
[CrossRef]

IEEE J. Lightwave Technol. (2)

T. Barwicz, M.A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," IEEE J. Lightwave Technol. 24, 2207-2218 (2006).Q1
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).Q2
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop mutiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

J. Lightwave Technol. (1)

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," submitted, IEEEJ. Lightwave Technol.Q3

Opt. Express (5)

Opt. Lett. (1)

Other (2)

M. A. Popovíc, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen and F. X. Kärtner, "Transparent wavelength switching of resonators," in Conference on Lasers and Electro-Optics 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), paper CPDA2.

F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact silicon WDM optical filters with flat-top response for on-chip optical interconnects," in Conference on Lasers and Electro-Optics 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), paper CTuG3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic drawing of a symmetrically coupled third-order microring resonator.

Fig. 2.
Fig. 2.

Scanning-electron micrographs of one fabricated third-order microring add-drop filter. The right ones are zoom-in views of waveguide coupling region (50K magnification).

Fig. 3.
Fig. 3.

Experimental responses of the fabricated third-order microring add-drop filter.

Fig. 4.
Fig. 4.

Comparison of add-drop responses between simulation and experiments. The drop responses were shifted up vertically by 3.5 dB in (a) and 2 dB in (b) to match the simulated responses where no additional losses were accounted.

Fig. 5.
Fig. 5.

Simulated relative group delays in channel dropping passband for two resonance wavelength bands.

Tables (1)

Tables Icon

Tab. 1 The propagation loss and the power loss ratio per round trip in microring resonators

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ j λ λ 1 FSR + ( κ 2 + κ p 2 ) 4 π j κ m 2 π 0 j κ m 2 π j λ λ 2 FSR + κ p 2 4 π j κ m 2 π 0 j κ m 2 π j λ λ 3 FSR + ( κ 2 + κ p 2 ) 4 π ] × [ s 1 s 2 s 3 ] = [ κ 2 2 π 0 0 ]

Metrics