Abstract

We report on the experimental observations of a period-doubling route to chaos and a total mode-locking between two lowest-order lateral modes of a GaAs ridge wave-guide diode laser at 795 nm. A self-starting passively mode-locking was achieved in an extended-cavity diode laser (ECDL) operating in a gain saturation regime. In the period-doubling mode-locked state, the RF spectra associated with the coherently coupled lateral TE0 and TE1 modes, consisted of harmonics (nfrep/2, n is an integer) of the half of pulse repetition rate frep /2 and the period (2T) of the pulse train was two-times longer than the pulse round-trip time T. On the other hand, in the total mode-locked state, the RF spectra and the pulse train corresponding to the TE0 and TE1 modes had exactly the same features compared to those of the period-doubling mode-locked state, except the RF spectra and the pulse train of the TE1 mode were shifted by fref/4 in frequency and by T in time, respectively, indicating the pulses actually traveled alternatively through two lateral modes. The total mode-locking and also chaotic pulsations were observed at slightly different operation parameters, e.g. at different feedback angle of the grating, which was used as an output coupler of the ECDL.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J.-M. Lourtioz, L. Chusseau, and N. Stelmakh, "Picosecond and sub-picosecond pulse generation in semiconductor laser," J. Phys. III (France) 2, 1673-1690 (1992).
    [CrossRef]
  2. R. Scollo, H.-J. Lohe, J. F. Holzman, F. Robin, and H.J¨ackel, "Mode-locked laser diode with an ultrafast integrated uni-traveling carrier saturable absorber," Opt. Lett. 30, 2808-2810 (2005).
    [CrossRef] [PubMed]
  3. C. Guignard, P. Besnard, A. Mihaescu, and N. I. Zheludev, "Harmonic passive mode-locking of a singlefrequency semiconductor laser submitted to nonlinear optical feedback," IEEE J. Quant. Electron. 42, 1185-1195 (2006).
    [CrossRef]
  4. Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, E. Ippen, "Operation of a passively modelocked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Tech. Lett. 16, 885-887 (2004).
    [CrossRef]
  5. H. A. Hous and E. P. Ippen, "Sel-starting of passively mode-locked lasers," Opt. Lett. 16, 1331-1333 (1991).
    [CrossRef]
  6. G. H. Jang, D. Yoon, M. Song, J. Lee, and T. H. Yoon, "Self-starting modelocked extended-cavity diode laser in the Littrow configuration exhibiting a first-order phase transition," Electron. Lett. (submitted).
  7. A. G. Vladimirov and D. Turev, "Model for passive mode locking in semiconductor lasers," Phys. Rev. A 72, 033808-1-13 (2005).
    [CrossRef]
  8. A. Gordon and B. Fischer, "Phase transition theory of many-mode odering and pulse formation in lasers," Phys. Rev. Lett. 89, 103901-1-4 (2002).
    [CrossRef] [PubMed]
  9. F. Krausz and Th. Brabec, "Passive mode locking in standing-wave laser resonators," Opt. Lett. 18, 888-890 (1993).
    [CrossRef] [PubMed]
  10. M. Achtenhagen, A. Hardy, and C. S. Harder, "Lateral mode disrimination and self-stabilization in ridge waveguide laser diodes," IEEE J. Quantum Electron. 18, 526-528 (2006).
  11. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  12. L. M. Zhao, D. Y. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004).
    [CrossRef] [PubMed]
  13. D. Cˆot’e and H. M. van Driel, "Period doubling of a femtosecond Ti:Sapphire laser by total mode locking," Opt. Lett. 23, 715-717 (1998).
    [CrossRef]

2006

C. Guignard, P. Besnard, A. Mihaescu, and N. I. Zheludev, "Harmonic passive mode-locking of a singlefrequency semiconductor laser submitted to nonlinear optical feedback," IEEE J. Quant. Electron. 42, 1185-1195 (2006).
[CrossRef]

M. Achtenhagen, A. Hardy, and C. S. Harder, "Lateral mode disrimination and self-stabilization in ridge waveguide laser diodes," IEEE J. Quantum Electron. 18, 526-528 (2006).

2005

2004

L. M. Zhao, D. Y. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004).
[CrossRef] [PubMed]

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, E. Ippen, "Operation of a passively modelocked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Tech. Lett. 16, 885-887 (2004).
[CrossRef]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1998

1993

1992

J.-M. Lourtioz, L. Chusseau, and N. Stelmakh, "Picosecond and sub-picosecond pulse generation in semiconductor laser," J. Phys. III (France) 2, 1673-1690 (1992).
[CrossRef]

1991

Electron. Lett.

G. H. Jang, D. Yoon, M. Song, J. Lee, and T. H. Yoon, "Self-starting modelocked extended-cavity diode laser in the Littrow configuration exhibiting a first-order phase transition," Electron. Lett. (submitted).

IEEE J. Quant. Electron.

C. Guignard, P. Besnard, A. Mihaescu, and N. I. Zheludev, "Harmonic passive mode-locking of a singlefrequency semiconductor laser submitted to nonlinear optical feedback," IEEE J. Quant. Electron. 42, 1185-1195 (2006).
[CrossRef]

IEEE J. Quantum Electron.

M. Achtenhagen, A. Hardy, and C. S. Harder, "Lateral mode disrimination and self-stabilization in ridge waveguide laser diodes," IEEE J. Quantum Electron. 18, 526-528 (2006).

IEEE Photon. Tech. Lett.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, E. Ippen, "Operation of a passively modelocked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Tech. Lett. 16, 885-887 (2004).
[CrossRef]

J. Phys. III (France)

J.-M. Lourtioz, L. Chusseau, and N. Stelmakh, "Picosecond and sub-picosecond pulse generation in semiconductor laser," J. Phys. III (France) 2, 1673-1690 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other

A. G. Vladimirov and D. Turev, "Model for passive mode locking in semiconductor lasers," Phys. Rev. A 72, 033808-1-13 (2005).
[CrossRef]

A. Gordon and B. Fischer, "Phase transition theory of many-mode odering and pulse formation in lasers," Phys. Rev. Lett. 89, 103901-1-4 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental set up. (b) Intensity profiles of two lowest-order lateral modes, TE0 and TE1, of a GaAs ridge wave-guide diode laser at 795 nm. (c) Beat note spectrum at 82.364 MHz between cw lasing frequencies of TE0 and TE1 modes. MLDL; mode-locked external-cavity diode laser, BS; beam splitter, PBS; polarization beam splitter, AOM; acousto-optic modulator, 1st; 1st-order diffracted beam, M; mirror, PDs; fast photo-detectors, LP; linear polarizer, R.B.; resolution bandwidth.

Fig. 2.
Fig. 2.

Output powers of the TE0 and TE1 modes as a function of injection current at the diode temperature T = 24.0 °C. η is a slope efficiency measured below the gain saturation regime. Solid lines are for the eye guidelines only.

Fig. 3.
Fig. 3.

A RF spectrum in frequency domain (a) and pulse series in time domain (b) of a self-starting passively mode-locked ECDL at the injection current I = 146.5 mA, diode temperature T = 39.5 °C, and the external cavity length L 0 = 45.0 cm. In (c) and (d), a period-doubled mode-locking is clearly observed, where all the operation parameters of the ECDL are exactly same as in (a) and (b), except the cavity length is tuned by a PZT to the length L 1 = L 0 +50 nm. R.B.; resolution bandwidth.

Fig. 4.
Fig. 4.

In (a) and (b), all the operation parameters of the ECDL are same as in Fig. 3, except now the injection current I = 147.3 mA, the cavity length L 2 = L 0 +1.14 μm, and the feedback angle of the grating is deliberately adjusted to see the total mode-locking between the lateral TE0 and TE1 modes (see text). A chaotic pulsation shown in (c) and (d) are obtained at the same operation parameters as in (a) and (b), except the cavity length is slightly tuned by 50 nm from L 2 and returned back to L 2 quickly, showing an optical bi-stability.

Metrics