Abstract

We describe the integration of optically pumped silicon nanocrystals (Si-ncs) embedded in SiO2 with low loss silicon nitride slab waveguides. An emission waveguide containing Si-ncs with a broad band emission centered at 850 nm, together with a low loss transmission silicon nitride waveguide forms a two section device. The waveguides are fabricated via the deposition of SiOx and silicon nitride using ECR-PECVD. Incorporation of hydrogen through annealing, while beneficial to emission from the Si-ncs, is found to increase material absorption in silicon nitride. This is reconciled by annealing at low temperature. This work shows clearly the potential for this material system as a means for the integration of optical emission and waveguiding using a wholly VLSI compatible processing technology. We further suggest that immediate applications exist in particular in the field of evanescent sensing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. T Reed, A. P. Knights, Silicon Photonics-An introduction (Wiley, 2004).
    [CrossRef]
  2. D. J. Lockwood, L. Pavesi, "Silicon Fundamentals for Photonics Applications," Top. Appl. Phys. 94, 1-50 (2004).Q1
    [CrossRef]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A Continuous-Wave Raman Silicon Laser," Nature 433, 725 (2005).
    [CrossRef] [PubMed]
  4. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, "Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector," Opt. Express 15, 2315-2322 (2007).
    [CrossRef] [PubMed]
  5. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
    [CrossRef] [PubMed]
  6. J. Valenta, I. Pelant, J. Linnros, "Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals," App. Phys. Lett. 81, 1396-1398 (2002).Q2
    [CrossRef]
  7. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
    [CrossRef]
  8. T. Ostatnicky, J. Valenta, I. Pelant, K. Luterova, R. G. Elliman S. Cheylan, B. Honerlage, "Photoluminescence from an active planar optical waveguide made of silicon nanocrystals: dominance of leaky substrate modes in dissipative structures," Opt. Mater. 27, 781-786 (2005).
    [CrossRef]
  9. L. Khriachtchev, D. Navarro-Urrios, L. Pavesi, C. J. Oton, N. E. Capuj, S. Novikov, "Spectroscopy of silica layers containing Si nanocrystals: Experimental evidence of optical birefringence," J. Appl. Phys. 101, 044310 (2007).
    [CrossRef]
  10. R. T. Neal, M. D. C. Charlton, G. J. Parker, C. E. Finlayson, M. C. Netti, J. J. Baumberg, "Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide," Appl. Phys. Lett. 83,4598-4600 (2003).
    [CrossRef]
  11. R. G. Elliman, M. Forcales, A. R. Wilkinson, N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Methods Phys. Res. B 257, 11-14 (2007).
    [CrossRef]
  12. P. Pellegrino, B. Garrido, C. Garcia, J. Arbiol, J. R. Morante, M. Melchiorri, N. Daldosso, L. Pavesi, E. Scheid, G. Sarrabayrouse, "Low-loss rib waveguides containing Si nanocrystals embedded in SiO2," J. Appl. Phys. 97, 074312 (2005).
    [CrossRef]
  13. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido L. Cognalto, "Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides," Appl. Phys. Lett. 86, 261103 (2005).
    [CrossRef]
  14. D. S. Gardner, M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804-811 (2005).
    [CrossRef]
  15. L. Khriachtchev, M. Rasanen, S. Novikov, "Efficient wavelength-selectrive optical waveguideing in a silica layer containing Si nanocrystals," Appl. Phys. Lett. 83, 3018-3020 (2003).
    [CrossRef]
  16. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, L. Pavesi, "Stimulated emission in nanocrystalline silicon superlattices," Appl. Phys. Lett. 83, 5479-5481 (2003).
    [CrossRef]
  17. R. G. Heideman, P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phas-modulated Mach-Zehnder interferometer system," Sens. Actuators B-Chem. 61, 100-127 (1999).
    [CrossRef]
  18. O. Hofmann, G. Voirin, P. Niedermann, A. Manz, "Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides," Anal. Chem. 74, 5243-5250 (2002).
    [CrossRef] [PubMed]
  19. T. W. MacElwee, S. E. Hill, S. Campbell, D. Ducharme, B. B. Rioux, I. D. Calder, M. Flynn, J. Wojcik, S. Gujrathi, P. Mascher, "Bright green visible electroluminescence from rare earth doped silicon rich SiOx," in 2006 3rd IEEE International Conference on Group IV photonics (Institute of Electrical and Electronics Engineers, New York, 2006), pp.216-218.
    [CrossRef]
  20. H. Lee, J. H. Shin, N. Park, "Performance analysis of naocluster-Si sentized Er-doped waveguide amplifier using top-pumped 470 nm LED," Opt. Express 13, 9881-9889 (2005).
    [CrossRef] [PubMed]
  21. J. Lee, J. H. Shin, N. Park, "Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica saveguide using top-pumping 470 nm LEDs," J. Lightwave Technol. 23, 19-25 (2005).
    [CrossRef]
  22. A. R. Wilkinson, R. G. Elliman, "Maximixing light emission from silicon nanocrystals - The role of hydrogen," Nucl. Instrum. Methods Phys. Res B 242, 303-306 (2006).
    [CrossRef]
  23. J. Chilwell, I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984).
    [CrossRef]
  24. D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, P. Mascher, "H-induced effects in luminescent silicon nanostructures obtained from plasma enhanced chemical vapor deposition grown SiyO1-y:H(y>1/3) thin films annealed in (Ar+5% H2)," J. Vac. Sci. Technol. A 24, 817-820 (2006).
    [CrossRef]
  25. X. Tan, J. Wojcik, P. Mascher, "Study of the optical properties of SiOxNy thin films by effective medium theories," J. Vac. Sci. Technol. A 22, 1115-1119 (2004).
    [CrossRef]
  26. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill 1985), Chapt. 8.
  27. J. Haes, B. Demeulenaere, R. Baets, D. Lenstra, T. D. Visser, H. Block, "Difference between TE and TM modal gain in amplifying waveguides: analysis and assessment of two perturbation approaches," Opt. Quantum. Electron. 29, 263-273 (1997).
    [CrossRef]
  28. W. Stutius, W. Streifer, "Silicon nitride films on silicon for optical waveguides," Appl. Optics 16, 3218-3222 (1977).
    [CrossRef]
  29. G. L. Bona. R. Germann, B. J. Offrein, "SiON high-refractive-index waveguide and planar lighwave circuits," IBM J. Res. & Dev. 47, 239-249 (2003).Q3
    [CrossRef]
  30. C. K. Wong, H. Wong, C. W. Kok, M. Chan, "Silicon oxynitride prepared by chemical vapor deposition as optical waveguide materials," J. Cryst. Growth 288, 171-175 (2006).
    [CrossRef]
  31. N. Daldosso, M. Melchiorri, F. Riboli, M Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734- 1740 (2004).
    [CrossRef]

2007 (3)

R. G. Elliman, M. Forcales, A. R. Wilkinson, N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Methods Phys. Res. B 257, 11-14 (2007).
[CrossRef]

L. Khriachtchev, D. Navarro-Urrios, L. Pavesi, C. J. Oton, N. E. Capuj, S. Novikov, "Spectroscopy of silica layers containing Si nanocrystals: Experimental evidence of optical birefringence," J. Appl. Phys. 101, 044310 (2007).
[CrossRef]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, "Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector," Opt. Express 15, 2315-2322 (2007).
[CrossRef] [PubMed]

2006 (3)

C. K. Wong, H. Wong, C. W. Kok, M. Chan, "Silicon oxynitride prepared by chemical vapor deposition as optical waveguide materials," J. Cryst. Growth 288, 171-175 (2006).
[CrossRef]

A. R. Wilkinson, R. G. Elliman, "Maximixing light emission from silicon nanocrystals - The role of hydrogen," Nucl. Instrum. Methods Phys. Res B 242, 303-306 (2006).
[CrossRef]

D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, P. Mascher, "H-induced effects in luminescent silicon nanostructures obtained from plasma enhanced chemical vapor deposition grown SiyO1-y:H(y>1/3) thin films annealed in (Ar+5% H2)," J. Vac. Sci. Technol. A 24, 817-820 (2006).
[CrossRef]

2005 (7)

P. Pellegrino, B. Garrido, C. Garcia, J. Arbiol, J. R. Morante, M. Melchiorri, N. Daldosso, L. Pavesi, E. Scheid, G. Sarrabayrouse, "Low-loss rib waveguides containing Si nanocrystals embedded in SiO2," J. Appl. Phys. 97, 074312 (2005).
[CrossRef]

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido L. Cognalto, "Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides," Appl. Phys. Lett. 86, 261103 (2005).
[CrossRef]

D. S. Gardner, M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804-811 (2005).
[CrossRef]

T. Ostatnicky, J. Valenta, I. Pelant, K. Luterova, R. G. Elliman S. Cheylan, B. Honerlage, "Photoluminescence from an active planar optical waveguide made of silicon nanocrystals: dominance of leaky substrate modes in dissipative structures," Opt. Mater. 27, 781-786 (2005).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A Continuous-Wave Raman Silicon Laser," Nature 433, 725 (2005).
[CrossRef] [PubMed]

J. Lee, J. H. Shin, N. Park, "Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica saveguide using top-pumping 470 nm LEDs," J. Lightwave Technol. 23, 19-25 (2005).
[CrossRef]

H. Lee, J. H. Shin, N. Park, "Performance analysis of naocluster-Si sentized Er-doped waveguide amplifier using top-pumped 470 nm LED," Opt. Express 13, 9881-9889 (2005).
[CrossRef] [PubMed]

2004 (4)

N. Daldosso, M. Melchiorri, F. Riboli, M Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734- 1740 (2004).
[CrossRef]

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

X. Tan, J. Wojcik, P. Mascher, "Study of the optical properties of SiOxNy thin films by effective medium theories," J. Vac. Sci. Technol. A 22, 1115-1119 (2004).
[CrossRef]

D. J. Lockwood, L. Pavesi, "Silicon Fundamentals for Photonics Applications," Top. Appl. Phys. 94, 1-50 (2004).Q1
[CrossRef]

2003 (4)

R. T. Neal, M. D. C. Charlton, G. J. Parker, C. E. Finlayson, M. C. Netti, J. J. Baumberg, "Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide," Appl. Phys. Lett. 83,4598-4600 (2003).
[CrossRef]

L. Khriachtchev, M. Rasanen, S. Novikov, "Efficient wavelength-selectrive optical waveguideing in a silica layer containing Si nanocrystals," Appl. Phys. Lett. 83, 3018-3020 (2003).
[CrossRef]

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, L. Pavesi, "Stimulated emission in nanocrystalline silicon superlattices," Appl. Phys. Lett. 83, 5479-5481 (2003).
[CrossRef]

G. L. Bona. R. Germann, B. J. Offrein, "SiON high-refractive-index waveguide and planar lighwave circuits," IBM J. Res. & Dev. 47, 239-249 (2003).Q3
[CrossRef]

2002 (2)

J. Valenta, I. Pelant, J. Linnros, "Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals," App. Phys. Lett. 81, 1396-1398 (2002).Q2
[CrossRef]

O. Hofmann, G. Voirin, P. Niedermann, A. Manz, "Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides," Anal. Chem. 74, 5243-5250 (2002).
[CrossRef] [PubMed]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

1999 (1)

R. G. Heideman, P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phas-modulated Mach-Zehnder interferometer system," Sens. Actuators B-Chem. 61, 100-127 (1999).
[CrossRef]

1997 (1)

J. Haes, B. Demeulenaere, R. Baets, D. Lenstra, T. D. Visser, H. Block, "Difference between TE and TM modal gain in amplifying waveguides: analysis and assessment of two perturbation approaches," Opt. Quantum. Electron. 29, 263-273 (1997).
[CrossRef]

1984 (1)

1977 (1)

W. Stutius, W. Streifer, "Silicon nitride films on silicon for optical waveguides," Appl. Optics 16, 3218-3222 (1977).
[CrossRef]

Anal. Chem. (1)

O. Hofmann, G. Voirin, P. Niedermann, A. Manz, "Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides," Anal. Chem. 74, 5243-5250 (2002).
[CrossRef] [PubMed]

App. Phys. Lett. (1)

J. Valenta, I. Pelant, J. Linnros, "Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals," App. Phys. Lett. 81, 1396-1398 (2002).Q2
[CrossRef]

Appl. Optics (1)

W. Stutius, W. Streifer, "Silicon nitride films on silicon for optical waveguides," Appl. Optics 16, 3218-3222 (1977).
[CrossRef]

Appl. Phys. Lett. (4)

R. T. Neal, M. D. C. Charlton, G. J. Parker, C. E. Finlayson, M. C. Netti, J. J. Baumberg, "Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide," Appl. Phys. Lett. 83,4598-4600 (2003).
[CrossRef]

N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido L. Cognalto, "Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides," Appl. Phys. Lett. 86, 261103 (2005).
[CrossRef]

L. Khriachtchev, M. Rasanen, S. Novikov, "Efficient wavelength-selectrive optical waveguideing in a silica layer containing Si nanocrystals," Appl. Phys. Lett. 83, 3018-3020 (2003).
[CrossRef]

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, L. Pavesi, "Stimulated emission in nanocrystalline silicon superlattices," Appl. Phys. Lett. 83, 5479-5481 (2003).
[CrossRef]

IBM J. Res. & Dev. (1)

G. L. Bona. R. Germann, B. J. Offrein, "SiON high-refractive-index waveguide and planar lighwave circuits," IBM J. Res. & Dev. 47, 239-249 (2003).Q3
[CrossRef]

J. Appl. Phys. (2)

P. Pellegrino, B. Garrido, C. Garcia, J. Arbiol, J. R. Morante, M. Melchiorri, N. Daldosso, L. Pavesi, E. Scheid, G. Sarrabayrouse, "Low-loss rib waveguides containing Si nanocrystals embedded in SiO2," J. Appl. Phys. 97, 074312 (2005).
[CrossRef]

L. Khriachtchev, D. Navarro-Urrios, L. Pavesi, C. J. Oton, N. E. Capuj, S. Novikov, "Spectroscopy of silica layers containing Si nanocrystals: Experimental evidence of optical birefringence," J. Appl. Phys. 101, 044310 (2007).
[CrossRef]

J. Cryst. Growth (1)

C. K. Wong, H. Wong, C. W. Kok, M. Chan, "Silicon oxynitride prepared by chemical vapor deposition as optical waveguide materials," J. Cryst. Growth 288, 171-175 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (2)

D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, P. Mascher, "H-induced effects in luminescent silicon nanostructures obtained from plasma enhanced chemical vapor deposition grown SiyO1-y:H(y>1/3) thin films annealed in (Ar+5% H2)," J. Vac. Sci. Technol. A 24, 817-820 (2006).
[CrossRef]

X. Tan, J. Wojcik, P. Mascher, "Study of the optical properties of SiOxNy thin films by effective medium theories," J. Vac. Sci. Technol. A 22, 1115-1119 (2004).
[CrossRef]

Nature (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A Continuous-Wave Raman Silicon Laser," Nature 433, 725 (2005).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res B (1)

A. R. Wilkinson, R. G. Elliman, "Maximixing light emission from silicon nanocrystals - The role of hydrogen," Nucl. Instrum. Methods Phys. Res B 242, 303-306 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. G. Elliman, M. Forcales, A. R. Wilkinson, N. J. Smith, "Waveguiding properties of Er-implanted silicon-rich oxides," Nucl. Instrum. Methods Phys. Res. B 257, 11-14 (2007).
[CrossRef]

Opt. Commun. (1)

L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

Opt. Express (2)

Opt. Mater. (2)

T. Ostatnicky, J. Valenta, I. Pelant, K. Luterova, R. G. Elliman S. Cheylan, B. Honerlage, "Photoluminescence from an active planar optical waveguide made of silicon nanocrystals: dominance of leaky substrate modes in dissipative structures," Opt. Mater. 27, 781-786 (2005).
[CrossRef]

D. S. Gardner, M. L. Brongersma, "Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology," Opt. Mater. 27, 804-811 (2005).
[CrossRef]

Opt. Quantum. Electron. (1)

J. Haes, B. Demeulenaere, R. Baets, D. Lenstra, T. D. Visser, H. Block, "Difference between TE and TM modal gain in amplifying waveguides: analysis and assessment of two perturbation approaches," Opt. Quantum. Electron. 29, 263-273 (1997).
[CrossRef]

Sens. Actuators B-Chem. (1)

R. G. Heideman, P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phas-modulated Mach-Zehnder interferometer system," Sens. Actuators B-Chem. 61, 100-127 (1999).
[CrossRef]

Top. Appl. Phys. (1)

D. J. Lockwood, L. Pavesi, "Silicon Fundamentals for Photonics Applications," Top. Appl. Phys. 94, 1-50 (2004).Q1
[CrossRef]

Other (3)

G. T Reed, A. P. Knights, Silicon Photonics-An introduction (Wiley, 2004).
[CrossRef]

T. W. MacElwee, S. E. Hill, S. Campbell, D. Ducharme, B. B. Rioux, I. D. Calder, M. Flynn, J. Wojcik, S. Gujrathi, P. Mascher, "Bright green visible electroluminescence from rare earth doped silicon rich SiOx," in 2006 3rd IEEE International Conference on Group IV photonics (Institute of Electrical and Electronics Engineers, New York, 2006), pp.216-218.
[CrossRef]

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill 1985), Chapt. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of a two-sectioned optically pumped Si-nc emitter integrated with a low loss silicon nitride waveguide. Two devices are fabricated. One has an emitting region length and transmitting region length of 7 mm and 26 mm respectively, and is 19 mm wide. The other has an emitting and transmitting region length of 16 mm each, and is 10 mm wide.

Fig. 2.
Fig. 2.

The top figures show schematics of the experimental setup for the streak measurement of the surface scattered light for a two-sectioned device, a), and for a silicon nitride core waveguide, b). a) An external 850 nm diode laser is prism coupled to the emission region of the waveguide. The surface scattered light from the mode is detected with a fiber bundle scanned to the right. b) Streak measurement of a silicon nitride core waveguide. The Si-nc core waveguide is also characterized in this configuration. The bottom figures show schematics of the experimental setup for SES measurements of the two-sectioned device taken from the right facet, c), and left facet, d). c) A 405 nm pump laser is scanned to the left across the emission region while edge emission is monitored from the right facet. d) SES measurement of the edge emission from the left facet. Here, the pump laser is scanned to the right starting at the facet. The Si-nc core waveguide is also characterized in this configuration.

Fig. 3.
Fig. 3.

Loss measurements of a SiO2/Si-nc/air waveguide made using the streak method with an 850 nm source (left) and the SES method (right). Both TE and TM polarizations are shown. The SES (streak) method measures linear fits of 29 (34) dB/cm for TE polarization and 27 (28) dB/cm for TM polarization.

Fig. 4.
Fig. 4.

Streak measurements at 850 nm showing loss of identically deposited but differently annealed SiO2/silicon nitride/air waveguides. The silicon nitride layer is 300 nm thick, with a refractive index of 1.9. Only TE coupled results are shown since TM gives similar results. For clarity, 11 and 2 dB/cm slopes are also shown.

Fig. 5.
Fig. 5.

Streak measurement of a two sectioned chip (left). Light is prism coupled to the emitting region on the left of the chip and propagates to the right, as per Fig. 2 a). A dashed line shows the transition in the two section chip. SES measurement of an identically deposited and annealed chip (right). Light is collected from the right facet after propagation through a 26 mm transmission region as the laser is scanned to the left, as per Fig 2 c) (note the x-axis in the two graphs are opposite directions).

Fig. 6.
Fig. 6.

Edge and surface emission spectra from a two-sectioned waveguide. (Left) Edge spectra collected out the left facet, in likeness to Fig 2 d). Each curve is from emission excited 3 mm further from the collection facet. The dot-dashed curve shows surface emission for comparison. The dashed curve shows surface emission from a 100 nm thick single layer Si-nc film. All curves are normalized to the spectral peak. (Right) Edge spectra of PL excited at the right most part of the emission region and collected out the right facet after propagation through a 16 mm transmitting region, in likness to Fig 2 c). The thin black curve is from laser excitation, while the thicker blue curve is from LED excitation.

Tables (1)

Tables Icon

Table 1. Waveguide Mode Properties

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= i 1 N eff n i Γ i α i

Metrics