Abstract

The reflection and emission properties of an infrared emitter, which is a plasmonic multilayer structure consisting of a relief metallic grating, a waveguide layer, and a metallic substrate are investigated both experimentally and theoretically. A localized surface plasmon polariton (SPP) mode which is angular-independent in almost the full range of incident angles is observed. The thermal emission of this structure is also measured. It is found that the emission peak coincides with the angular-independent localized SPP mode. In addition, the emission spectrum of the plasmonic emitter can be predicted by investigating the reflectance spectrum.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  3. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]
  4. J. Hashizume and F. Koyama, "Plasmon Enhanced Optical Near-field probing of Metal Nanoaperture Surface Emitting Laser," Opt. Express. 12, 6391-6396 (2004).
    [CrossRef] [PubMed]
  5. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
    [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
    [CrossRef] [PubMed]
  7. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424-1-7 (2003).
    [CrossRef]
  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  9. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435-1-8 (2006).
    [CrossRef]
  10. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 89, 173116-173118 (2006).
    [CrossRef]
  11. T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," Appl. Phys. Lett. 89, 173128-173130 (2006).
    [CrossRef]
  12. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
    [CrossRef]
  13. I. El-Kady, R. Biswas, Y. Ye, M. F. Su, I. Puscasu, M. Pralle, E. A. Johnson, J. Daly, and A. Greenwald, Photonics Nanostruct. Fundam. Appl. 1, 69-71 (2003).
    [CrossRef]
  14. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531-1-6 (2005).
    [CrossRef]
  15. S. Y. Lin, J. Moreno, and J. G. Fleming, "A 3D Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  16. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
    [CrossRef]
  17. P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910-1-5 (2005).
    [CrossRef]
  18. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127-1-6 (2005).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  20. M.G. Moharam, E.B. Grann, D.A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  21. J. J. Greffet and M. Nieto-Vesperinas, "Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law," J. Opt. Soc. Am. A 15, 2735-2744 (1998).
    [CrossRef]
  22. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Hemisphere Publishing Corporation, New York 1981).
  23. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117 - 122 (1999).
    [CrossRef]
  24. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
    [CrossRef] [PubMed]
  25. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412-1-11 (2004).
    [CrossRef]
  26. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005).
    [CrossRef] [PubMed]

2006 (2)

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 89, 173116-173118 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," Appl. Phys. Lett. 89, 173128-173130 (2006).
[CrossRef]

2005 (1)

2004 (3)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon Enhanced Optical Near-field probing of Metal Nanoaperture Surface Emitting Laser," Opt. Express. 12, 6391-6396 (2004).
[CrossRef] [PubMed]

2003 (3)

I. El-Kady, R. Biswas, Y. Ye, M. F. Su, I. Puscasu, M. Pralle, E. A. Johnson, J. Daly, and A. Greenwald, Photonics Nanostruct. Fundam. Appl. 1, 69-71 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, "A 3D Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

2002 (2)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

2001 (2)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

1999 (1)

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117 - 122 (1999).
[CrossRef]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

J. J. Greffet and M. Nieto-Vesperinas, "Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law," J. Opt. Soc. Am. A 15, 2735-2744 (1998).
[CrossRef]

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

1995 (1)

Appl. Phys. Lett. (6)

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 89, 173116-173118 (2006).
[CrossRef]

T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," Appl. Phys. Lett. 89, 173128-173130 (2006).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, "A 3D Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117 - 122 (1999).
[CrossRef]

Opt. Express. (1)

J. Hashizume and F. Koyama, "Plasmon Enhanced Optical Near-field probing of Metal Nanoaperture Surface Emitting Laser," Opt. Express. 12, 6391-6396 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photonics Nanostruct. Fundam. Appl. (1)

I. El-Kady, R. Biswas, Y. Ye, M. F. Su, I. Puscasu, M. Pralle, E. A. Johnson, J. Daly, and A. Greenwald, Photonics Nanostruct. Fundam. Appl. 1, 69-71 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Other (8)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435-1-8 (2006).
[CrossRef]

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424-1-7 (2003).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531-1-6 (2005).
[CrossRef]

P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910-1-5 (2005).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127-1-6 (2005).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412-1-11 (2004).
[CrossRef]

R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Hemisphere Publishing Corporation, New York 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Basic geometry of an IR emitter considered. It is a plasmonic multilayer structure consisting of a relief metallic grating, a waveguide layer, and a metallic substrate.

Fig. 2.
Fig. 2.

Angle-dependent reflectance spectra of the IR emitter. (a) measured. (b) RCWA simulation. The geometric parameters used in the simulation were: Λ=3000nm, =1900nm, tg =100nm and tw =25nm.

Fig. 3.
Fig. 3.

Magnetic field strength, Hy 2, (a) along the x-axis at the center of the Ag ridge (b) along the z-axis at the grating/SiO2 interface. The dips at 0.17eV (square) and 0.38eV (triangle) are calculated for an incident angle of 0o while the dips at 0.27eV (circular) and 0.5eV (star) are calculated for an incident angle of 89°. The geometric parameters were: Λ=3000nm, =1900nm, tg =100nm and tw =25nm.

Fig. 4.
Fig. 4.

(a) Simulated (dashed line) and measured (solid line) emission spectrum of the IR emitter for 220°C (red line) and 260°C (black line), respectively. The geometric parameters were: Λ=3000nm, =1900nm, tg =100nm and tw =25nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Emission ( λ ) = TR ( λ ) ( 1 0 π 2 R ( λ , θ ) cos ( θ ) )

Metrics